Multi-scale models for the optimization of batch bioreactors
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: This is the author’s version of a work that was accepted for publication in Chemical Engineering Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Science, Vol. 95. (2013). doi: 10.1016/j.ces.2013.03.036
Collection
Abstract
Process models play an important role in the bioreactor design, optimisation and control. In previous work, the bioreactor models have mainly been developed by considering the microbial kinetics and the reactor environmental conditions with the assumption that the ideal mixing occurs inside the reactor. This assumption is relatively difficult to meet in the practical applications. In this paper, we propose a new approach to the bioreactor modelling by expanding the so-called Herbert’s Microbial Kinetics (HMK) model so that the developed models are able to incorporate the mixing effects via the inclusion of the aeration rate and stirrer speed into the microbial kinetics. The expanded models of Herbert’s microbial kinetics allow us to optimize the bioreactor’s performances with respects to the aeration rate and stirrer speed as the decision variables, where this optimisation is not possible using the original HMK model of microbial kinetics. Simulation and experimental studies on a batch ethanolic fermentation demonstrates the use of the expanded HMK models for the optimisation of bioreactor’s performances. It is shown that the integration of the expanded HMK model with the Computational Fluid Dynamics (CFD) model of mixing, which we call it as a Kinetics Multi-Scale (KMS) model, is able to predict the experimental values of yield and productivity of the batch fermentation process accurately (with less than 5% errors).
Related items
Showing items related by title, author, creator and subject.
-
Liew, Emily Wan Teng (2011)Mixing plays a substantial role in determining the overall performance of a bioreactor. Well mixing in bioreactor, especially for ethanolic fermentation process is important for the homogenization of miscible and immiscible ...
-
Liew, E.; Nandong, J.; Samyudia, Yudi (2012)In this paper, we propose multi-scale models for a batch bioreactor, which are developed by expanding the so-called Herbert's Microbial Kinetics (HMK) concept so that the effects of mixing conditions are incorporated via ...
-
Liew, Emily; Nandong, Jobrun; Samyudia, Yudi (2012)In this paper, we propose multi-scale models for a batch bioreactor, which are developed by expanding the so-called Herbert’s Microbial Kinetics (HMK) concept so that the effects of mixing conditions are incorporated via ...