Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration

    Access Status
    Fulltext not available
    Authors
    Li, Meng
    Hua, B.
    Luo, J.
    Jiang, S.
    Pu, J.
    Chi, B.
    Li, J.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, M. and Hua, B. and Luo, J. and Jiang, S. and Pu, J. and Chi, B. and Li, J. 2016. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. ACS Applied Materials and Interfaces. 8 (16): pp. 10293-10301.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.6b00925
    School
    Fuels and Energy Technology Institute
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    URI
    http://hdl.handle.net/20.500.11937/23095
    Collection
    • Curtin Research Publications
    Abstract

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-d (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

    Related items

    Showing items related by title, author, creator and subject.

    • H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels
      Chen, H.; Wang, F.; Wang, W.; Chen, D.; Li, S.; Shao, Zongping (2016)
      For commercialization-oriented solid oxide fuel cells, the state-of-the-art nickel cermet anodes are still the preferable choice because of their several favorable features, such as high electrical conductivity, good ...
    • Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
      Wang, Wei; Qu, J.; Zhao, B.; Yang, G.; Shao, Zongping (2015)
      Solid oxide fuel cells (SOFCs), which directly convert chemical energy into electricity, have several advantages, such as fuel flexibility and low emissions. Unfortunately, the performance and stability of SOFCs with ...
    • Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
      Song, Y.; Wang, W.; Qu, J.; Zhong, Y.; Yang, G.; Zhou, W.; Shao, Zongping (2018)
      The poor sulfur tolerance of conventional nickel cermet anodes is particularly concerning for solid oxide fuel cell technology. Herein, we report an innovative anode composed of a samaria-doped ceria (SDC) scaffold and a ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.