Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc/3.0/
Collection
Abstract
Solid oxide fuel cells (SOFCs), which directly convert chemical energy into electricity, have several advantages, such as fuel flexibility and low emissions. Unfortunately, the performance and stability of SOFCs with state-of-the-art Ni-based anodes are sensitive to impurities, such as sulfur, which is a common component of practical fuels, including natural gas and renewable biogas. The development of sulfur-tolerant anode materials is important for successfully operating SOFCs with sulfur-containing practical fuels. In this study, a core–shell architecture was fabricated from solution infiltration and was evaluated as a sulfur-tolerant anode for SOFCs. For the first time, we used a lithium conductive material, Li0.33La0.56TiO3 (LLTO, perovskite oxide), as the shell for anodic reactions. The resulting cell delivered higher electrochemical activities than similar cells, with widely used sulfur-tolerant perovskite anodes. In addition, the cell with the core–shell structured anode demonstrated favorable stability over 70 hours' operation when using 1000 ppm H2S–H2 fuel at 800 °C. In contrast, the cell with an anode composed of nanoparticles failed after only 5.5 hours under the same operation conditions. This study offers a new strategy for developing highly sulfur tolerant and efficient anodes for SOFCs.
Related items
Showing items related by title, author, creator and subject.
-
Chen, H.; Wang, F.; Wang, W.; Chen, D.; Li, S.; Shao, Zongping (2016)For commercialization-oriented solid oxide fuel cells, the state-of-the-art nickel cermet anodes are still the preferable choice because of their several favorable features, such as high electrical conductivity, good ...
-
Song, Y.; Wang, Wei; Ge, L.; Xu, X.; Zhang, Z.; Julião, P.; Zhou, W.; Shao, Zongping (2017)© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable ...
-
Li, Meng; Hua, B.; Luo, J.; Jiang, S.; Pu, J.; Chi, B.; Li, J. (2016)Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed ...