Oxidative acetylenic coupling reactions as a surface chemistry tool
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A novel method to prepare redox monolayers on silicon electrodes has been developed that employs CuI-catalyzed oxidative acetylenic coupling reactions for molecular electronic type applications. As the first case study, ethynylferrocene was covalently immobilized onto an acetylene-terminated monolayer on a Si(100) surface to give a 1,3-diyne (CC-CC-) linked redox assembly. The derivatization process requires no protection/de-protection steps, nor activation procedures. The effect of the conjugated diyne linkage on the rate of electron transfer between tethered ferrocenyl units and the silicon electrode is benchmarked against well-established "click" products (i.e. 1,2,3-triazole linkage). The surfaces, after each step, are characterized thoroughly using X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The coupling chemistry provides a useful strategy for functionalizing silicon surfaces and contributes to an expanding repertoire of wet chemistry routes for the functionalization of solid substrates.
Related items
Showing items related by title, author, creator and subject.
-
McAtee, Brendon Kynnie (2003)Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required ...
-
Chaugule, V.; Narayanaswamy, Ramesh; Lucey, Anthony; Narayanan, V.; Jewkes, J. (2018)Jet impingement is widely used for forced-convection heat transfer applications and knowledge about its flow structure and heat transfer rate on a static surface are well established. However, the characteristics of jet ...
-
Skomurski, F.; Ewing, R.; Rohl, Andrew; Gale, Julian; Becker, U. (2006)To evaluate the stability, potential reactivity, and relaxation mechanisms on different uraninite surfaces, surface energy values were calculated and structural relaxation was determined for the (111), (110), and (100) ...