Show simple item record

dc.contributor.authorCiampi, S.
dc.contributor.authorJames, M.
dc.contributor.authorDarwish, Nadim
dc.contributor.authorLuais, E.
dc.contributor.authorGuan, B.
dc.contributor.authorHarper, J.
dc.contributor.authorGooding, J.
dc.date.accessioned2017-01-30T12:40:26Z
dc.date.available2017-01-30T12:40:26Z
dc.date.created2016-05-19T19:30:18Z
dc.date.issued2011
dc.identifier.citationCiampi, S. and James, M. and Darwish, N. and Luais, E. and Guan, B. and Harper, J. and Gooding, J. 2011. Oxidative acetylenic coupling reactions as a surface chemistry tool. Physical Chemistry Chemical Physics. 13 (34): pp. 15624-15632.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/23997
dc.identifier.doi10.1039/c1cp21450k
dc.description.abstract

A novel method to prepare redox monolayers on silicon electrodes has been developed that employs CuI-catalyzed oxidative acetylenic coupling reactions for molecular electronic type applications. As the first case study, ethynylferrocene was covalently immobilized onto an acetylene-terminated monolayer on a Si(100) surface to give a 1,3-diyne (CC-CC-) linked redox assembly. The derivatization process requires no protection/de-protection steps, nor activation procedures. The effect of the conjugated diyne linkage on the rate of electron transfer between tethered ferrocenyl units and the silicon electrode is benchmarked against well-established "click" products (i.e. 1,2,3-triazole linkage). The surfaces, after each step, are characterized thoroughly using X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The coupling chemistry provides a useful strategy for functionalizing silicon surfaces and contributes to an expanding repertoire of wet chemistry routes for the functionalization of solid substrates.

dc.publisherR S C Publications
dc.titleOxidative acetylenic coupling reactions as a surface chemistry tool
dc.typeJournal Article
dcterms.source.volume13
dcterms.source.number34
dcterms.source.startPage15624
dcterms.source.endPage15632
dcterms.source.issn1463-9076
dcterms.source.titlePhysical Chemistry Chemical Physics
curtin.departmentNanochemistry Research Institute
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record