Show simple item record

dc.contributor.authorAchuthan, Nirmala
dc.contributor.authorAchuthan, Narasimaha
dc.contributor.authorSimanihuruk, M.
dc.date.accessioned2017-01-30T12:42:51Z
dc.date.available2017-01-30T12:42:51Z
dc.date.created2012-02-15T20:00:47Z
dc.date.issued2011
dc.identifier.citationAchuthan, Nirmala and Achuthan, N.R. and Simanihuruk, M. 2011. On minimal triangle-free graphs with prescribed k-defective chromatic number. Discrete Mathematics. 311 (13): pp. 1119-1127.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/24432
dc.identifier.doi10.1016/j.disc.2010.08.013
dc.description.abstract

A graph G is (m, k)-colourable if its vertices can be coloured with m colours such that the maximum degree of any subgraph induced on vertices receiving the same colour is at most k. The k-defective chromatic number χk(G) is the least positive integer m for which G is (m, k)-colourable. Let f(m, k) be the smallest order of a triangle-free graph such that χk(G)=m. In this paper we study the problem of determining f(m, k). We show that f(3, 2)=13 and characterize the corresponding minimal graphs. We present a lower bound for f(m, k) for all m≥3 and also an upper bound for f(3, k).

dc.publisherElsevier Science BV
dc.subjectk-defective chromatic number
dc.subjectTriangle-free graphs
dc.subjectk-independence
dc.titleOn minimal triangle-free graphs with prescribed k-defective chromatic number
dc.typeJournal Article
dcterms.source.volume311
dcterms.source.number13
dcterms.source.startPage1119
dcterms.source.endPage1127
dcterms.source.issn0012365X
dcterms.source.titleDiscrete Mathematics
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record