Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimal feedback control for dynamic systems with state constraints: An exact penalty approach

    196199_196199.pdf (194.6Kb)
    Access Status
    Open access
    Authors
    Lin, Qun
    Loxton, Ryan
    Teo, Kok Lay
    Wu, Yong Hong
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lin, Qun and Loxton, Ryan and Teo, Kok Lay and Wu, Yong Hong. 2014. Optimal feedback control for dynamic systems with state constraints: An exact penalty approach. Optimization Letters. 8 (4): pp. 1535-1551.
    Source Title
    Optimization Letters
    DOI
    10.1007/s11590-013-0657-y
    ISSN
    18624480
    Remarks

    The final publication is available at Springer via http://doi.org/10.1007/s11590-013-0657-y

    NOTICE: This is the author’s version of a work in which changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

    URI
    http://hdl.handle.net/20.500.11937/24654
    Collection
    • Curtin Research Publications
    Abstract

    In this paper, we consider a class of nonlinear dynamic systems with terminal state and continuous inequality constraints. Our aim is to design an optimal feedback controller that minimizes total system cost and ensures satisfaction of all constraints. We first formulate this problem as a semi-infinite optimization problem. We then show that by using a new exact penalty approach, this semi-infinite optimization problem can be converted into a sequence of nonlinear programming problems, each of which can be solved using standard gradient-based optimization methods.We conclude the paper by discussing applications of our work to glider control.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimal control problems with constraints on the state and control and their applications
      Li, Bin (2011)
      In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • A study of optimization and optimal control computation : exact penalty function approach
      Yu, Changjun (2012)
      In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.