A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-d perovskite oxide as both the anode and cathode
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A novel perovskite-type La0.8Sr0.2Sc0.2Mn0.8O3 (LSSM) oxide was synthesized and evaluated as the electrode material of a symmetric solid-oxide fuel cell. Characterization was done by electrical conductivity, crystal structure stability, redox stability, catalytic activity for methane oxidation and oxygen electro-reduction. LSSM shows greater electrical conductivity than the typical La0.8Sr0.2Cr0.5Mn0.5O3 (LSCM) perovskite oxide under both anode and cathode operating conditions. It also shows excellent chemical and structural stability due to the backbone effect of Sc3+ for the perovskite lattice structure. A symmetric electrolyte-supported cell with 0.3 mm thick scandium-stabilized zirconia electrolyte and LSSM as cathode and anode shows peak power densities of 310 and 130 mW cm2 at 900 °C, respectively, when operating on wet H2 and wet CH4. Stable performance is demonstrated. © 2008 Acta Materialia Inc.
Related items
Showing items related by title, author, creator and subject.
-
Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Wright, M.; Sun, T.; Xu, C.; Haque, F.; Uddin, A. (2016)Mixed ion based perovskite solar cells (PSCs) have recently emerged as a promising photoactive material owing to their augmented electronic and light harvesting properties combined with stability enhancing characteristics. ...
-
Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)© 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
-
Cao, J.; Ji, Y.; Shao, Zongping (2022)Protonic ceramic fuel cells (PCFCs), capable of harmonious and efficient conversion of chemical energy into electric power at reduced temperature enabled by fast proton conduction, are promising energy technology, which ...