Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Perovskites for protonic ceramic fuel cells: a review

    Access Status
    Fulltext not available
    Authors
    Cao, J.
    Ji, Y.
    Shao, Zongping
    Date
    2022
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cao, J. and Ji, Y. and Shao, Z. 2022. Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science. 15 (6): pp. 2200-2232.
    Source Title
    Energy and Environmental Science
    DOI
    10.1039/d2ee00132b
    ISSN
    1754-5692
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP200103315
    http://purl.org/au-research/grants/arc/DP200103332
    URI
    http://hdl.handle.net/20.500.11937/91975
    Collection
    • Curtin Research Publications
    Abstract

    Protonic ceramic fuel cells (PCFCs), capable of harmonious and efficient conversion of chemical energy into electric power at reduced temperature enabled by fast proton conduction, are promising energy technology, which may radically re-define the whole way of energy conversion in the future, while their practical use is highly dependent on the availability of efficient key cell materials, i.e., electrolyte and electrodes, that should meet several important requirements, such as conductivity, stability, catalytic activity, compatibility, and cost. During the past two decades, complex oxides with the ABO3 perovskite or related structure have been extensively exploited as key materials in PCFCs, i.e., electrolyte and electrodes, due to their flexible composition with versatile properties. Rational design of perovskite and perovskite-related oxides with robust properties remains a pending research challenge, which makes in-depth understanding of the material engineering in PCFCs a specific focus of research. In this review, recent advances in the material engineering of perovskite oxides for PCFCs are summarized, and regulation strategies are presented, and applications as the electrodes and electrolyte are discussed. Importance is paid to exploiting the general rule of compositional engineering for amending the lattice structure, defect structure, and ionic transportation behavior of perovskite oxides, consequently providing useful guidance on the development of alternative perovskite materials for PCFCs and related fields.

    Related items

    Showing items related by title, author, creator and subject.

    • Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications
      Zhang, C.; Chen, Jiayi; Kong, L.; Wang, L.; Wang, S.; Chen, Wei; Mao, Rundong; Turyanska, L.; Jia, Guohua ; Yang, X. (2021)
      Core/shell structured metal halide perovskite nanocrystals (NCs) are emerging as a type of material with remarkable optical and electronic properties. Research into this field has been developing and expanding rapidly in ...
    • Cation-Deficient Perovskites for Clean Energy Conversion
      Su, Chao ; Wang, Wei ; Shao, Zongping (2021)
      Conspectus Clean energy conversion technologies can power progress for achieving a sustainable future, while functional materials lie at the core of these technologies. In particular, highly efficient electrocatalysts ...
    • Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%
      Liu, P.; Chen, Y.; Xiang, H.; Yang, X.; Wang, Wei ; Ran, R.; Zhou, W.; Shao, Zongping (2021)
      Both the film quality and the electronic properties of halide perovskites have significant influences on the photovoltaic performance of perovskite solar cells (PSCs) because both of them are closely related to the charge ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.