Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube

    Access Status
    Fulltext not available
    Authors
    Abishek, S.
    King, A.
    Narayanaswamy, Ramesh
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Abishek, S. and King, A. and Narayanaswamy, R. 2015. Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube. International Journal of Multiphase Flow. 74: pp. 148-164.
    Source Title
    International Journal of Multiphase Flow
    DOI
    10.1016/j.ijmultiphaseflow.2015.04.014
    ISSN
    0301-9322
    School
    Department of Mechanical Engineering
    URI
    http://hdl.handle.net/20.500.11937/25127
    Collection
    • Curtin Research Publications
    Abstract

    A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (m<inf>f</inf>) of CMC in the solution is varied in the range 0.1%=m<inf>f</inf>=1% to accommodate zero-shear dynamic viscosities in the range 0.009-2.99Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in m<inf>f</inf> is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of m<inf>f</inf>, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of m<inf>f</inf>. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.

    Related items

    Showing items related by title, author, creator and subject.

    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    • Haemodynamic evaluation of coronary artery plaques : prediction of coronary atherosclerosis and disease progression
      Chaichana, Thanapong (2012)
      Coronary artery disease is the leading cause of death in advanced countries. Coronary artery disease tends to develop at locations where disturbed flow patterns occur, such as the left coronary artery. Haemodynamic change ...
    • Numerical simulation of the settling behaviour of particles in thixotropic fluids
      Gumulya, Monica; Horsley, Richard; Pareek, Vishnu (2014)
      A numerical study on the settling behaviour of particles in shear-thinning thixotropic fluids has been conducted. The numerical scheme was based on the volume of fluid model, with the solid particle being likened to a ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.