Show simple item record

dc.contributor.authorAbishek, S.
dc.contributor.authorKing, A.
dc.contributor.authorNarayanaswamy, Ramesh
dc.date.accessioned2017-01-30T12:46:51Z
dc.date.available2017-01-30T12:46:51Z
dc.date.created2015-10-29T04:09:28Z
dc.date.issued2015
dc.identifier.citationAbishek, S. and King, A. and Narayanaswamy, R. 2015. Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube. International Journal of Multiphase Flow. 74: pp. 148-164.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/25127
dc.identifier.doi10.1016/j.ijmultiphaseflow.2015.04.014
dc.description.abstract

A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (m<inf>f</inf>) of CMC in the solution is varied in the range 0.1%=m<inf>f</inf>=1% to accommodate zero-shear dynamic viscosities in the range 0.009-2.99Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in m<inf>f</inf> is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of m<inf>f</inf>, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of m<inf>f</inf>. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.

dc.publisherElsevier Ltd
dc.titleDynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube
dc.typeJournal Article
dcterms.source.volume74
dcterms.source.startPage148
dcterms.source.endPage164
dcterms.source.issn0301-9322
dcterms.source.titleInternational Journal of Multiphase Flow
curtin.departmentDepartment of Mechanical Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record