High-performance SrNb0.1Co0.9-xFexO 3-d perovskite cathodes for low-temperature solid oxide fuel cells
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Chemical to electrical energy conversion using a solid oxide fuel cell (SOFC) becomes more practical as the operating temperature is lowered to 600 °C and below. Given the thermally activated nature of the oxygen reduction reaction (ORR) at the cathode side, development of cathode catalysts with very low polarisation resistance is essential. Here, we showed that partial substitution of Co within SrNb0.1Co0.9O 3-d by Fe (up to 0.5) triggers the formation of oxygen non-stoichiometry while preserving the primitive cubic lattice, thus substantially enhancing the ORR performance below 600 °C (relative to the parent compound). Close correlation between the oxygen non-stoichiometry and ORR activity trends was found to some extent. SrNb0.1Co 0.7Fe0.2O3-d (SNCF0.2) cathode exhibits a very low area specific resistance value of 0.052 O cm2 at 600 °C which translates to superior fuel cell performance, e.g. peak power density of 1587 mW cm-2 at 600 °C. Moreover, the synergistic relationship between ORR activity, thermal expansion coefficient and enhanced CO2 resistance attests to the significance of the SNCF cathode. The last attribute is envisioned as a dominant factor for applications using alternative fuels (e.g. CO which normally contains CO2) and in a portable single-chamber SOFC.
Related items
Showing items related by title, author, creator and subject.
-
Shao, Zongping; Haile, S. (2010)© 2011 Nature Publishing Group, a division of Macmillan Publishers Limited and published by World Scientific Publishing Co. under licence. All rights reserved.Fuel cells directly and efficiently convert chemical energy ...
-
Zhang, Y.; Zhu, A.; Guo, Y.; Wang, C.; Ni, M.; Yu, H.; Zhang, C.; Shao, Zongping (2019)Proton conducting solid oxide fuel cells are solid state electrochemical devices for power generation at a conversion efficiency (>60%) higher than conventional thermal power plants (~40%). The cathode is the key component ...
-
Ni, N.; Wang, C.C.; Jiang, San Ping ; Skinner, S.J. (2019)La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) solid oxide fuel cell cathodes were poisoned by Cr at different temperatures and polarization conditions with a Cr-Fe alloy as the interconnect. Cr induced degradation was analysed by ...