Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Methane-Induced Deformation of Porous Carbons: From Normal to High-Pressure Operating Conditions

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Piotr
    Furmaniak, S.
    Gauden, P.
    Terzyk, A.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, Piotr and Furmaniak, Sylwester and Gauden, Piotr and Terzyk, Artur. 2012. Methane-Induced Deformation of Porous Carbons: From Normal to High-Pressure Operating Conditions. Journal of Physical Chemistry C 116 (2): pp. 1740-1747.
    Source Title
    Journal of Physical Chemistry C
    DOI
    10.1021/jp209364x
    ISSN
    1932-7447
    URI
    http://hdl.handle.net/20.500.11937/25819
    Collection
    • Curtin Research Publications
    Abstract

    Applying developed recently thermodynamic model of adsorption-induced deformation of microporous carbons (Kowalczyk, P.; Ciach, A.; Neimark, A. Langmuir 2008, 24, 6603), we study the deformation of carbonaceous porous materials due to adsorption of methane at 313 K andpressures up to 19 MPa. The internal adsorption stress induced by adsorbed/compressed methane is very high in the smallest micropores (for instance, adsorption stress in 0.315 nm ultra-micropore reaches 1.8 GPa at 19 MPa). Model calculations show that depending on pore structure both monotonic (i.e.,expansion) and nonmonotonic (i.e., initial contraction and further expansion) methane stress-strain isotherm are theoretically predicted. Our calculations reproduce quantitatively the methane stress-strain isotherm on carbide-derived activated carbon at 313 K and experimental pressures up to 5.9 MPa. Moreover, we extrapolate methane stress-strain isotherm measured by the dilatometric method up to 19 MPa to mimic high pressure operating conditions. We predict that expansion of the studied carbon sample reaches 0.3% of volume at 19 MPa and 313 K. From our extrapolation of experimental dilatometric deformation data to high pressure conditions, we predict that the reduction of pressure from 19 to 1 MPa is accompanied by shrinkage of carbon sample by about 0.28% of volume. Comparison with recent study due to Yang et al. (Yang, K.; Lu, X.; Lin, Y.; Neimark, A. V. Energy Fuels 2010, 24, 5955-5964) shows that studied activated carbon is more resistant to adsorption stress than various coal samples. Presented study can be useful for optimization of operating conditions used in methane gas-extraction technologies.

    Related items

    Showing items related by title, author, creator and subject.

    • Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons
      Kowalczyk, Piotr; Furmaniak, S.; Gauden, P.; Terzyk, A. (2010)
      Applying the thermodynamic model of adsorption-induced deformation of microporous carbons developed recently (Kowalczyk, P.; Ciach, A.; Neimark, A. Langmuir 2008, 24, 6603), we study the deformation of carbonaceous amorphous ...
    • Methane adsorption capacity of shale samples from Western Australia
      Zou, Jie ; Rezaee, Reza (2020)
      To examine the influence of clay minerals on methane adsorption in shales, shale samples with low total organic carbon (TOC), ranging from 0.23 to 3.2 wt%, were collected from the Canning and Perth basins, Western Australia. ...
    • Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs
      Zou, J.; Rezaee, M. Reza; Liu, K. (2017)
      Methane adsorption isotherms on shale were investigated at 25, 45, 60, and 80 °C with pressure up to 7 MPa (1015 psi). A total of six shale samples with low total organic carbon (TOC) from the Perth Basin and Canning Basin ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.