ICE: A new method for the multivariate curve resolution of hyperspectral images
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
The iterated constrained endmembers (ICE) algorithm is a new method of unmixing hyperspectral images that combines aspects of multivariate curve resolution (MCR) methods in chemometrics and unmixing algorithms in remote sensing. Like many MCR methods, ICE also estimates pure components, or endmembers, via alternating least squares; however, it is explicitly based on a convex geometry model and estimation is carried out in a subspace of reduced dimensionality defined by the minimum noise fraction (MNF) transform. In this paper, we describe the ICE algorithm and its properties. We also illustrate its use on a hyperspectral image of cervical tissue. The unmixing of hyperspectral images presents some unique challenges, and we also outline where further development is required. Copyright © 2008 John Wiley & Sons, Ltd.
Related items
Showing items related by title, author, creator and subject.
-
Santich, Norman Ty (2007)As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. ...
-
Robinson, Todd Peter (2008)Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...
-
Salomidi, Avgousta; Benndorf, Jörg; Barakos, George (2024)Hyperspectral imaging has emerged as a powerful tool in mineral exploration and surface mining over the past three decades, with applications ranging from large-scale airborne surveys to close-range ground-based studies. ...