Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis

    Access Status
    Fulltext not available
    Authors
    Li, J
    Qin, K
    Li, G
    Cao, M
    Xiao, B
    Chen, L
    Zhao, J
    Evans, Noreen
    McInnes, Brent
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, Jinxiang and Qin, Kezhang and Li, Guangmin and Cao, Mingjian and Xiao, Bo and Chen, Lei and Zhao, Junxing and Evans, Noreen and McInnes, Brent. 2012. Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineralogy and Petrology. 105 (3-4): pp. 201-221.
    Source Title
    Mineralogy and Petrology
    DOI
    10.1007/s00710-012-0211-0
    ISSN
    0930-0708
    URI
    http://hdl.handle.net/20.500.11937/26447
    Collection
    • Curtin Research Publications
    Abstract

    The Yulong porphyry copper deposit (6.5 Mt at 0.46 % Cu) in eastern Tibet was formed in a post-collisional setting. New zircon U–Pb and U–Th/He ages, apatite U–Th/He ages and in-situ zircon Hf isotopic and trace element data for the Yulong ore-bearing adakitic porphyries elucidate the thermal history and petrogenesis of the deposit. Zircon U–Pb ages range from from 41.2 Ma to 40.7 Ma, indicating an Eocene formation age. Combined with the zircon U–Th/He age of 37.5 ± 1.2 Ma, results suggest that magmatic-hydrothermal evolution lasted up to 5 m.y. The apatite U–Th/He age of 33.4 ± 0.9 Ma reflects Yulong deposit exhumation during the ~33–30 Ma Tibetan uplift. Moreover, the high εHf(t)-values (7.1 ~ 12.2) zircon yield the highest ΣREE content, higher Y/Hf, lower Ce/Ce* and higher Th/U ratios compared to inherited zircon or magmatic zircon suggesting that the high εHf(t) zircon crystallized from another magma, and that magma mixing probably contributed to the adakitic porphyries at Yulong. In addition, inherited and magmatic zircon with the lowest εHf(t) values (−20.6 ~ −4.4) suggest crustal contamination. The positive zircon εHf(t) values indicate a source in the juvenile arc lower crust. Significantly, the juvenile arc lower crust inherited arc magma characteristics (abundant F, Cl, Cu and high oxidation state), which are now found in the porphyry Cu–Mo deposits.

    Related items

    Showing items related by title, author, creator and subject.

    • Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating
      Li, G.; Cao, M.; Qin, K.; Evans, Noreen; McInnes, Brent; Liu, Y. (2013)
      Understanding postmineralization tectonic movements in porphyry deposits, is critical to interpreting the complete thermal-tectonic history. This study reports new zircon U–Pb ages, hydrothermal biotite 39Ar/40Ar age, and ...
    • Quantifying exhumation at the giant pulang porphyry Cu-Au deposit using U-Pb-He dating
      Leng, C.; Cooke, D.; Hou, Z.; Evans, Noreen; Zhang, X.; Chen, W.; Danisik, Martin; McInnes, Brent; Yang, J. (2018)
      The Triassic Pulang porphyry Cu-Au deposit, located in the South Yidun terrane, is the oldest and one of the largest porphyry deposits in the southeastern Tibetan Plateau. The mineralization occurs mostly in the potassic ...
    • Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation
      Zhao, J.; Qin, K.; Xiao, B.; McInnes, Brent; Li, G.; Evans, Noreen; Cao, M.; Li, J. (2015)
      A complete thermal history for the Qulong porphyry Cu–Mo deposit, Tibet is presented. Zircon U–Pb geochronology indicates that the mineralization at Qulong resulted from brecciation-veining events associated with the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.