Speech Enhancement Strategy for Speech Recognition Microcontroller under Noisy Environments
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing, Volume 118, October 2013, Pages 279-288. http://dx.doi.org/10.1016/j.neucom.2013.03.008
Collection
Abstract
Industrial automation with speech control functions is generally installed with a speech recognition sensor which is used as an interface for users to articulate speech commands. However, recognition errors are likely to be produced when background noise surrounds the command spoken into the speech recognition microcontrollers. In this paper, a speech enhancement strategy is proposed to develop noise suppression filters in order to improve the accuracy of speech recognition microcontrollers. It uses a universal estimator, namely a neural network, to enhance the recognition accuracy of microcontrollers by integrating better signals processed by various noise suppression filters, where a global optimization algorithm, namely an intelligent particle swarm optimization, is used to optimize the inbuilt parameters of the neural network in order to maximize accuracy of speech recognition microcontrollers working within noisy environments. The proposed approach overcomes the limitations of the existing noise suppression filters intended to improve recognition accuracy. The performance of the proposed approach was evaluated by a speech recognition microcontroller, which is used in electronic products with speech control functions. Results show that the accuracy of the speech recognition microcontroller can be improved using the proposed approach, when working under low signal to noise ratio conditions in the industrial environments of automobile engines and factory machines.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Kit Yan; Yong, P.; Nordholm, Sven; Yiu, C.; Lam, H. (2014)Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a ...
-
Chan, Kit; Yong, Pei; Nordholm, Sven; Yiu, Ka Fai; Lam, H. (2014)Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a ...
-
Yiu, K.; Chan, Kit Yan; Grbić, N.; Nordholm, Sven (2012)In this paper, a new approach to designing beamformers for voice control device is proposed. It is well-known that under a strong near-field noise with low signal-to-noise ratios (SNR), the performance of speech recognition ...