A hybrid noise suppression filter for accuracy enhancement of commercial speech recognizers in varying noisy conditions
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Soft Computing, Vol. 14, Part A. (2014). doi: 10.1016/j.asoc.2013.05.017
Collection
Abstract
Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a limitation in common in that recognition errors are likely to be produced when background noise surrounds the spoken command, thereby creating potential dangers for the disabled if recognition errors exist in the control systems. In this paper, a hybrid noise suppression filter is proposed to inter-face with the commercial speech recognizers in order to enhance the recognition accuracy under variant noisy conditions. It intends to decrease the recognition errors when the commercial speech recognizers are working under a noisy environment. It is based on a sigmoid function which can effectively enhance noisy speech using simple computational operations, while a robust estimator based on an adaptive-network-based fuzzy inference system is used to determine the appropriate operational parameters for the sigmoid function in order to produce effective speech enhancement under variant noisy conditions.The proposed hybrid noise suppression filter has the following advantages for commercial speech recognizers: (i) it is not possible to tune the inbuilt parameters on the commercial speech recognizers in order to obtain better accuracy; (ii) existing noise suppression filters are too complicated to be implemented for real-time speech recognition; and (iii) existing sigmoid function based filters can operate only in a single-noisy condition, but not under varying noisy conditions. The performance of the hybrid noise suppression filter was evaluated by interfacing it with a commercial speech recognizer, commonly used in electronic products. Experimental results show that improvement in terms of recognition accuracy and computational time can be achieved by the hybrid noise suppression filter when the commercial recognizer is working under various noisy environments in factories.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Kit Yan; Yong, P.; Nordholm, Sven; Yiu, C.; Lam, H. (2014)Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a ...
-
Chan, Kit Yan; Nordholm, Sven; Yiu, Ka Fai; Togneri, R. (2013)Industrial automation with speech control functions is generally installed with a speech recognition sensor which is used as an interface for users to articulate speech commands. However, recognition errors are likely to ...
-
Chan, Kit Yan; Yiu, Ka Fai; Nordholm, Sven (2012)Speech recognition has been used in various real-world applications such as automotive control, electronic toys, electronic appliances etc. In many applications involved speech control functions, a commercial speech ...