Show simple item record

dc.contributor.authorLim, Hann
dc.contributor.authorSeng, K.
dc.contributor.authorAng, L.
dc.contributor.authorChin, S.
dc.identifier.citationLim, H. and Seng, K. and Ang, L. and Chin, S. 2009. Lyapunov theory-based multilayered neural network. IEEE Transactions on Circuits and Systems II: Express Briefs. 56 (4): pp. 305-309.

This brief presents a Lyapunov theory-based weight adaptation scheme for a multilayered neural network (MLNN) mainly used to classify a multiple-input-multiple-output (MIMO) problem. Initially, the MLNN system is linearized using Taylor series expansion. Then, the weight adaptation scheme is designed based on the Lyapunov stability theory to iteratively update the weight. In the design, the Lyapunov function has to be well selected to construct an energy space with a single global minimum. Hence, the Lyapunov theory-based MLNN acts as a MIMO classifier for face recognition. Analysis and discussion on Lyapunov properties of the proposed classifier are included. The performance of the proposed technique is tested on the Olivetti Research Laboratory database for face classification, and some comparisons with existing conventional techniques are given. Simulation results have revealed that our proposed system achieved better performance. © 2009 IEEE.

dc.publisherIEEE Circuits and Systems Society
dc.titleLyapunov theory-based multilayered neural network
dc.typeJournal Article
dcterms.source.titleIEEE Transactions on Circuits and Systems II: Express Briefs
curtin.departmentCurtin Sarawak
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record