Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates

    132009.pdf (148.2Kb)
    Access Status
    Open access
    Authors
    Kristiana, Ina
    Gallard, H.
    Joll, Cynthia
    Croue, J.
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kristiana, Ina and Gallard, H and Joll, Cynthia and Croue, Jean-philippe. 2009. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. Water Research. 43 (17): pp. 4177-4186.
    Source Title
    Water Research
    DOI
    10.1016/j.watres.2009.06.044
    ISSN
    00431354
    Faculty
    Curtin Water Quality Research Centre (CWQRC)
    Faculty of Science and Engineering
    School
    Department of Applied Chemistry
    Remarks

    Copyright © 2009 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/2698
    Collection
    • Curtin Research Publications
    Abstract

    The formation of disinfection by-products (DBPS) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total organic chlorine (TOCl), bromine (TOBr), and iodine (TOI). The formation and distribution of halogen-specific TOX during chlorination and chloramination of natural organic matter (NOM) isolates in the presence of bromide and iodide ions were studied. As expected, chloramination produced significantly less TOX than chlorination. TOM was the dominant species formed in both chlorination and chloramination. TOI was always produced in chloramination, but not in chlorination when high chlorine dose was used, due to the limited presence of HOI in chlorination as a result of the oxidation of iodide to iodate in the presence of excess chlorine. The formation of TOI during chloramination increased as the initial iodide ion concentration increased, with a maximum of similar to 60% of the initial iodide ion becoming incorporated into NOM. Iodine incorporation in NOM was consistently higher than bromine incorporation, demonstrating that the competitive reactions between bromine and iodine species in chloramination favoured the formation of HOI and thus TOI, rather than TOBr. Correlations between the aromatic character of the NOM isolates (SUVA(254) and % aromatic C) and the concentrations of overall TOX and halogen-specific TOX in chloramination were observed. This indicates that the aromatic moieties in NOM, as indicated by SUVA(254) and % aromatic C, play an important role in the formation of overall TOX and halogen-specific TOX in chloramination. THMs comprised only a fraction of TOX, up to 7% in chloramination and up to 47% in chlorination. Although chloramine produces less TOX than chlorine, it formed proportionally more non-THM DBPs than chlorine. These non-THM DBPs are mostly unknown, corresponding to unknown health risks. Considering the higher potential for formation of iodinated DBPs and unknown DBPs associated with the use of chloramine, water utilities need to carefully balance the risks and benefits of using chloramine as an alternative disinfectant to chlorine in order to satisfy guideline values for THMs.

    Related items

    Showing items related by title, author, creator and subject.

    • Characterization of the Molecular Weight and Reactivity of Natural Organic Matter in Surface Waters
      Kristiana, Ina; Tan, J.; McDonald, Suzanne; Joll, Cynthia; Heitz, Anna (2014)
      Natural organic matter (NOM) can impact on all aspects of water treatments processes. Understanding the physical and chemical characteristics of NOM is essential to improving drinkingwater treatment processes. The size ...
    • Impact of bromide and iodide during drinking water disinfection and potential treatment processes for their removal or mitigation
      Gruchlik, Yolanta; Tan, J; Allard, Sebastian; Heitz, Anna; Bowman, M.; Halliwell, D.; Gunten, U.; Criquet, Justine; Joll, Cynthia (2014)
      In this study, the impact of bromide and iodide on disinfected waters was examined and potential treatment technologies for their removal or mitigation were investigated. Distributed waters from two Western Australian ...
    • Influence of bromide on iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters
      Criquet, J.; Allard, Sebastian; Salhi, E.; Joll, C.; Von Gunten, Urs; Heitz, A. (2012)
      The kinetics of iodate formation during chlorination of iodide-containing waters is a key factor in the formation of iodoorganic compounds. In contrast to bromate, iodate is considered to be non-toxic. A strategy to reduce ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.