Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate
Access Status
Authors
Date
2005Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
In this contribution, we introduce a new bootstrap-based method for Global Navigation Satellite System (GNSS) carrier-phase ambiguity resolution. Integer bootstrapping is known to be one of the simplest methods for integer ambiguity estimation with close-to-optimal performance. Its outcome is easy to compute due to the absence of an integer search, and its performance is close to optimal if the decorrelating Z-transformation of the LAMBDA method is used. Moreover, the bootstrapped estimator is presently the only integer estimator for which an exact and easy-to-compute expression of its fail-rate can be given. A possible disadvantage is, however, that the user has only a limited control over the fail-rate. Once the underlying mathematical model is given, the user has no freedom left in changing the value of the fail-rate. Here, we present an ambiguity estimator for which the user is given additional freedom. For this purpose, use is made of the class of integer aperture estimators as introduced in Teunissen (2003). This class is larger than the class of integer estimators. Integer aperture estimators are of a hybrid nature and can have integer outcomes as well as non-integer outcomes. The new estimator is referred to as integer aperture bootstrapping. This new estimator has all the advantages known from integer bootstrapping with the additional advantage that its fail-rate can be controlled by the user. This is made possible by giving the user the freedom over the aperture of the pull-in region. We also give an exact and easy-to-compute expression for its controllable fail-rate.
Related items
Showing items related by title, author, creator and subject.
-
Teunissen, Peter (2003)Abstract. In this invited contribution a brief review will be presented of the integer estimation theory as developed by the author over the last decade and which started with the introduction of the LAMBDA method in 1993. ...
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Teunissen, Peter (2003)GNSS carrier phase ambiguity resolution is the key to fast and high-precision satellite positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. In (Teunissen, ...