Show simple item record

dc.contributor.authorBaddeley, Adrian
dc.contributor.authorDereudre, D.
dc.date.accessioned2017-01-30T12:58:37Z
dc.date.available2017-01-30T12:58:37Z
dc.date.created2015-10-29T04:09:49Z
dc.date.issued2013
dc.identifier.citationBaddeley, A. and Dereudre, D. 2013. Variational estimators for the parameters of Gibbs point process models. Bernoulli. 19 (3): pp. 905-930.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/27366
dc.identifier.doi10.3150/12-BEJ419
dc.description.abstract

This paper proposes a new estimation technique for fitting parametric Gibbs point process models to a spatial point pattern dataset. The technique is a counterpart, for spatial point processes, of the variational estimators for Markov random fields developed by Almeida and Gidas. The estimator does not require the point process density to be hereditary, so it is applicable to models which do not have a conditional intensity, including models which exhibit geometric regularity or rigidity. The disadvantage is that the intensity parameter cannot be estimated: inference is effectively conditional on the observed number of points. The new procedure is faster and more stable than existing techniques, since it does not require simulation, numerical integration or optimization with respect to the parameters © 2013 ISI/BS.

dc.publisherINT STATISTICAL INST
dc.titleVariational estimators for the parameters of Gibbs point process models
dc.typeJournal Article
dcterms.source.volume19
dcterms.source.number3
dcterms.source.startPage905
dcterms.source.endPage930
dcterms.source.issn1350-7265
dcterms.source.titleBernoulli
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record