The location of Ti containing phases after the completion of the NaAlH4 + xTiCl3 milling process
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The NaAlH4 + xTiCl3 (x < 0.1) system has been studied by X-ray synchrotron diffraction and transmission electron microscopy (TEM) after the completion of the milling process, for both planetary (PM) and cryo milled (CM) samples. Comparison of the NaAlH4 mosaic size (coherence length) determined from the X-ray synchrotron diffraction lineshape, and measurement of the external powder grain dimensions of ca. 250–300 particles by TEM, reveals that after the completion of the milling process, (1 1 0) {1 1 1} edge dislocated 2–20 nm Al crystallites are dispersed in a Ti rich amorphous (a-)Al1−xTix (0.3 < x < 0.5) matrix. This nano Al/Al50Ti50 composite is embedded on the surface of single crystalline NaAlH4 powder grains. The NaAlH4 single crystal powder grains are moderately defected with uncorrelated defects, induced from the milling process.
Related items
Showing items related by title, author, creator and subject.
-
Pitt, M.; Vullum, P.; Sørby, M.; Sulic, M.; Emerich, H.; Paskevicius, Mark; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)The NaAlH4 + xTiCl3 (x < 0.1) system has been studied by a combination of X-ray synchrotron and neutron diffraction, and isotopic H2/D2 scrambling after the completion of the milling process, and the first thermal release ...
-
Pitt, M.; Vullum, P.; Sørby, M.; Emerich, H.; Paskevicius, Mark; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)This study elucidates the role of transition metal (TM) additives in enhancing hydrogen (H) reversibility and hydrogenation kinetics for the NaAlH4 system. The isothermal hydrogen absorption kinetics of the planetary ...
-
Pitt, M.; Vullum, P.; Sorby, M.; Emerich, H.; Paskevicius, Mark; Webb, C.; Gray, E.; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)The hydrogen cycled (H) planetary milled (PM) NaAlH4 + xM (x < 0.1) system (M = 30 nm Ag, 80 nm Al, 2–3 nm C, 30 nm Cr, 25 nm Fe, 30 nm Ni, 25 nm Pd, 65 nm Ti) has been studied by high resolution synchrotron powder X-ray ...