Show simple item record

dc.contributor.authorTeunissen, Peter
dc.date.accessioned2017-01-30T13:03:31Z
dc.date.available2017-01-30T13:03:31Z
dc.date.created2011-10-25T05:51:01Z
dc.date.issued1999
dc.identifier.citationTeunissen, P.J.G. 1999. A theorem on maximizing the probability of correct integer estimation. Artificial Satellites. 34(1): pp. 3-9.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/28168
dc.description.abstract

High ambiguity success rates are required for GPS ambiguity resolution to be successful. It is therefore of importance to be able to identify the integer estimators which maximize these success rates. In this contribution we present a theorem which shows when the success rate is maximized. This theorem generalizes a result of (Teunissen, 1998), which states that, in case of elliptically contoured distributions, it is the integer least-squares estimator that provides the largest probability of correct integer estimation.

dc.languageen
dc.subjectAdmissible Integer Estimation - Maximum Success Rate - GPS Ambiguity Resolution
dc.titleA theorem on maximizing the probability of correct integer estimation.
dc.typeJournal Article
curtin.departmentDepartment of Spatial Sciences
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record