Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
© 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 h of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-time-scale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for crossmatching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3 per cent for the various nights. For sources fainter than ~1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.
Related items
Showing items related by title, author, creator and subject.
-
Arora, B.; Morgan, John; Ord, S.; Tingay, Steven; Hurley-Walker, Natasha; Bell, M.; Bernardi, G.; Bhat, Ramesh; Briggs, F.; Callingham, J.; Deshpande, A.; Dwarakanath, K.; Ewall-Wice, A.; Feng, L.; For, B.; Hancock, Paul; Hazelton, B.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapinska, A.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, Randall; Wu, C.; Zheng, Q.; Bowman, J.; Cappallo, R.; Corey, B.; Emrich, David; Goeke, R.; Greenhill, L.; Kaplan, D.; Kasper, J.; Kratzenberg, E.; Lonsdale, C.; Lynch, Mervyn; McWhirter, S.; Morales, M.; Morgan, E.; Prabu, T.; Rogers, A.; Roshi, A.; Shankar, N.; Srivani, K.; Subrahmanyan, R.; Waterson, M.; Webster, R.; Whitney, A.; Williams, A.; Williams, A. (2015)Copyright © Astronomical Society of Australia 2015 We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a ...
-
Sotomayor-Beltran, C.; Sobey, Charlotte; Hessels, J.; De Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I.; Beck, R.; Bell, M.; Bell, M.; Bentum, M.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W.; Brüggen, M.; Ciardi, B.; De Gasperin, F.; Dettmar, R.; Van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M.; Grießmeier, J.; Grit, T.; Gunst, A.; Hassall, T.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V.; Koopmans, L.; Kuniyoshi, M.; Kuper, G.; Van Leeuwen, J.; Maat, P.; MacArio, G.; Markoff, S.; McKean, J.; Mulcahy, D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B.; Tagger, M.; Tang, Y.; Tasse, C.; Ter Veen, S.; Vermeulen, R.; Van Weeren, R.; Wijers, R.; Wijnholds, S.; Wise, M.; Wucknitz, O. (2013)Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements ...
-
Chege, J Kariuki; Jordan, Chris ; Lynch, Christene ; Line, Jack ; Trott, Cathryn (2021)The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers which target the 21 cm signal of ...