Cross voltage control with inner hysteresis current control for multi-output boost converter
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy.
Related items
Showing items related by title, author, creator and subject.
-
Iyer, Narayanaswamy P.R. (2012)Matrix converters (MCs) are essentially forced commutated cycloconverters with inherent four quadrant operation consisting of a matrix of bidirectional switches such that there is a switch for each possible connection ...
-
Borle, Lawrence J. (1999)This thesis is concerned primarily with the optimization of the current regulation in bi-directional ac-dc power converters through the use of appropriate current control methods. Following a review into prior current ...
-
Li, Q.; Wolfs, Peter (2005)The two-inductor boost converter has been previously presented in a zero-voltage switching (ZVS) form where the transformer leakage inductance and the MOSFET output capacitance can be utilized as part of the resonant ...