Flow-injection amperometry at microfabricated silicon-based μ-liquid–liquid interface arrays
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in Electrochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Electrochimica Acta [55, 14, 2010] DOI 10.1016/j.electacta.2008.12.014
Collection
Abstract
Geometrically regular silicon membrane-based micropore arrays were employed for defined arrays of micrometer-sized interfaces between two immiscible electrolyte solutions (μITIES). These were incorporated into a poly(tetrafluoroethylene) (PTFE) hydrodynamic cell. Electrochemistry at the μITIES array was undertaken following gellification of the organic phase using polyvinyl chloride (PVC) and flowing an aqueous phase over the array surface. Cyclic voltammetric characterization of asymmetric diffusion profiles on either side of the μITIES was accomplished under flowing conditions using positively and negatively charged (TEA+ and 4-OBSA−, respectively) model analyte species. Incorporation of an ionophore (dibenzo-18-crown-6 ether) into the organogel allowed the ion-transfer detection of two oligopeptides (phenylalanine dipeptide and lysine dipeptide) within the available potential window under stationary and flowing conditions.Flow rate studies with TEA+ indicated that the amperometric peak currents do not obey the Levich equation, due to diffusion dominating the mass transport, as opposed to convection. The influence of the applied potential () on the amperometric response of the oligopeptides was studied and hydrodynamic voltammograms (HDVs) for the individual oligopeptides were subsequently constructed. The data presented provide a basis for the use of silicon membrane-based μITIES arrays in flow analytical methods.
Related items
Showing items related by title, author, creator and subject.
-
Alvarez De Eulate, Eva; Strutwolf, J.; Liu, Yang; O'Donnell, Kane; Arrigan, Damien (2016)Arrays of microscale interfaces between two immiscible electrolyte solutions (µITIES) were formed using glass membranes perforated with microscale pores by laser ablation. Square arrays of 100 micropores in 130 µm thick ...
-
Scanlon, M.; Strutwolf, J.; Blake, A.; Iacopino, D.; Quinn, A.; Arrigan, Damien (2010)Ion transfer across interfaces between immiscible liquids provides a means for the nonredox electrochemical detection of ions. Miniaturization of such interfaces brings the benefits of enhanced mass transport. Here, the ...
-
O'Sullivan, S.; Arrigan, Damien (2012)Electrochemistry at liquid–liquid interfaces, or at interfaces between two immiscible electrolyte solutions ITIES, provides a basis for the non-redox detection of biological molecules, based on ion-transferor adsorption ...