Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
NOTICE: This is the author’s version of a work that was accepted for publication in Chemical Engineering Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Science, Vol. 106, (2014). doi: 10.1016/j.ces.2013.11.032
Collection
Abstract
Surfactant dry solution (DS) was prepared by mixing sodium dodecyl sulfate (SDS) solution, hydrophobic silica nanoparticles and air in a high speed blender. Flour-like SDS-DS combines the advantages of dispersed dry water and active SDS solution. Methane storage in clathrate hydrates using SDS-DS was investigated in a stainless steel vessel without stirring under the condition of 5.0MPa and 273.2K. The results demonstrated that highly dispersed SDS-DS could significantly enhance formation kinetics and storage capacity of methane hydrate. SDS-DS exhibited about the same methane storage capacity (172.96m3 m-3) as dry water, but faster storage rates than dry water. Compared to SDS solution, SDS-DS had similar storage rates (7.44m3 m-3 min-1) and higher methane storage capacity under the relative low pressure. However, the aggregation of partial SDS-DS powders destroyed its original dispersive property after hydrate dissociation.
Related items
Showing items related by title, author, creator and subject.
-
Ding, Ailin; Yang, L.; Fan, S.; Lou, Xia (2013)Methane gas hydrates are a promising alternative for storage and transport of natural gas. In this paper, porous poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-methacrylic acid) ...
-
Shi, Bo-Hui; Yang, L.; Fan, S.; Lou, Xia (2017)Porous hydrogel particles of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N-isopropylacrylamide) (PNIPAAm) with varying water absorbability and quantities were investigated upon their ability and stability to support ...
-
Shi, B.; Fan, S.; Lou, Xia (2014)Mixed dry-water (DW) droplets and porous hydrogel (HYD) microspheres have been investigated for applications in reversible methane storage in the form of clathrates. The process of the methane hydrates formation in the ...