Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effect of 1.9 and 1.4 Ga impact events on 4.3 Ga zircon and phosphate from an Apollo 15 melt breccia

    Access Status
    Open access via publisher
    Authors
    Grange, Marion
    Nemchin, Alexander
    Pidgeon, Robert
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Grange, Marion and Nemchin, Alexander and Pidgeon, Robert. 2013. The effect of 1.9 and 1.4 Ga impact events on 4.3 Ga zircon and phosphate from an Apollo 15 melt breccia. Journal of Geophysical Research: Planets. 118 (10): pp. 2180-2197.
    Source Title
    Journal of Geophysical Research
    DOI
    10.1002/jgre.20167
    ISSN
    2169-9011
    URI
    http://hdl.handle.net/20.500.11937/29067
    Collection
    • Curtin Research Publications
    Abstract

    Zircon and phosphate grains from matrix and quartz-monzodiorite (QMD) clasts in two thin sections of Apollo 15 impact melt breccia 15405 were investigated using optical microscopy, scanning electron microscopy, Raman spectroscopy, and ion microprobe U-Pb analyses. U-Pb results for zircon grains with well-defined cathodoluminescence zoning define the primary (i.e., magmatic) crystallization age as 4330 ± 6Ma (2σ). One zircon consists of a preserved inner part surrounded by a porous polycrystalline (“granular”) mixture of zircon and baddeleyite, indicating incomplete reaction of the zircon with melt. Previous work showed that this microstructure could form at pressures above 60GPa and a temperature close to ~1700°C and is evidence of an impact-related melting event. The U-Pb system of this grain indicates a resetting event at 1940 ± 10Ma, interpreted as the age of this impact (impact #1). Other zircon and phosphate grains also have disturbed U-Pb systems, showing an even younger reset event (impact #2) at 1407 ± 57 Ma. Evidence of impact is supported by microstructures of zircon and baddeleyite such as secondary rims. These impacts are tentatively identified as those having formed Autolycus and Aristillius craters.

    Related items

    Showing items related by title, author, creator and subject.

    • Thermal history recorded by the Apollo 17 impact melt breccia 73217
      Grange, Marion; Nemchin, Alexander; Pidgeon, Robert; Timms, Nicholas Eric; Muhling, J.; Kennedy, Allen (2009)
      Lunar breccia 73217 is composed of plagioclase and pyroxene clasts originating from a single gabbronorite intrusion, mixed with a silica-rich glass interpreted to represent an impact melt. A study of accessory minerals ...
    • Zircons from the Acraman impact melt rock (South Australia): Shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events
      Schmieder, M.; Tohver, E.; Jourdan, Fred; Denyszyn, S.; Haines, P. (2015)
      This study presents the first optical and scanning electron microscopic characterization and U–Pb SHRIMP dating results for zircon grains separated from the most likely autochthonous impact melt rock in the central domain ...
    • Apollo 12 breccia 12013: Impact-induced partial Pb loss in zircon and its implications for lunar geochronology
      Thiessen, F.; Nemchin, Alexander; Snape, J.; Bellucci, J.; Whitehouse, M. (2018)
      Apollo 12 breccia 12013 is composed of two portions, one grey in colour, the other black. The grey portion of the breccia consists mainly of felsite thought to have formed during a single crystallisation event, while the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.