Face Image Enhancement via Principal Component Analysis
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Faculty
Remarks
The original publication is available at : http://www.springerlink.com
Collection
Abstract
This paper investigates face image enhancement based on the principal component analysis (PCA). We first construct two types of training samples: one consists of some high-resolution face images, and the other includes the low resolution images obtained via smoothed and down-sampling process from the first set. These two corresponding sets form two different image spaces with different resolutions. Second, utilizing the PCA, we obtain two eigenvector sets which form the vector basis for the high resolution space and the low resolution space, and a unique relationship between them is revealed. We propose the algorithm as follows: first project the low resolution inquiry image onto the low resolution image space and produce a coefficient vector, then asuper-resolution image is reconstructed via utilizing the basis vector of high-resolution image space with the obtained coefficients. This method improves the visual effect significantly; the corresponding PSNR is much largerthan other existing methods.
Related items
Showing items related by title, author, creator and subject.
-
Li, Billy; Mian, A.; Liu, Wan-Quan; Krishna, Aneesh (2013)We present an algorithm that uses a low resolution 3D sensor for robust face recognition under challenging conditions. A preprocessing algorithm is proposed which exploits the facial symmetry at the 3D point cloud level ...
-
Li, Billy Y.L. (2013)One of the most important advantages of automatic human face recognition is its nonintrusiveness property. Face images can sometime be acquired without user's knowledge or explicit cooperation. However, face images acquired ...
-
Kramer, Annika (2009)Visual perception is our most important sense which enables us to detect and recognise objects even in low detail video scenes. While humans are able to perform such object detection and recognition tasks reliably, most ...