Show simple item record

dc.contributor.authorFiorini, V.
dc.contributor.authorZacchini, S.
dc.contributor.authorRaiteri, Paolo
dc.contributor.authorMazzoni, R.
dc.contributor.authorZanotti, V.
dc.contributor.authorMassi, Massimiliano
dc.contributor.authorStagni, S.
dc.date.accessioned2017-01-30T13:21:11Z
dc.date.available2017-01-30T13:21:11Z
dc.date.created2016-09-01T19:30:16Z
dc.date.issued2016
dc.identifier.citationFiorini, V. and Zacchini, S. and Raiteri, P. and Mazzoni, R. and Zanotti, V. and Massi, M. and Stagni, S. 2016. Negatively charged Ir(III) cyclometalated complexes containing a chelating bis-tetrazolato ligand: Synthesis, photophysics and the study of reactivity with electrophiles. Dalton Transactions. 45 (32): pp. 12884-12896.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/30736
dc.identifier.doi10.1039/c6dt02524b
dc.description.abstract

The bis-tetrazolate dianion [1,2 BTB]2−, which is the deprotonated form of 1,2 bis-(1H-tetrazol-5-yl)benzene [1,2-H2BTB], is for the first time exploited as an ancillary N^N ligand for negatively charged [Ir(C^N)2(N^N)]−-type complexes, where C^N is represented by cyclometalated 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (F2ppy). The new Ir(III) complexes [Ir(ppy)2(1,2 BTB)]− and [Ir(F2ppy)2(1,2 BTB)]− have been fully characterised and the analysis of the X-ray structure of [Ir(ppy)2(1,2 BTB)]− confirmed the coordination of the [1,2 BTB]2− dianion in a bis chelated fashion through the N-atoms adjacent to each of the tetrazolic carbons. Both of the new anionic Ir(III) complexes displayed phosphorescence in the visible region, with intense sky-blue (λmax = 460–490 nm) or aqua (λmax = 490–520 nm) emissions originating from [Ir(F2ppy)2(1,2 BTB)]− and [Ir(ppy)2(1,2 BTB)]−, respectively. In comparison with our very recent examples of anionic Ir(III)tetrazolate cyclometalates, the new Ir(III) tris chelate complexes [Ir(F2ppy)2(1,2 BTB)]− and [Ir(ppy)2(1,2 BTB)]−, display an improved robustness, allowing the study of their reactivity toward the addition of electrophiles such as H+ and CH3+. In all cases, the electrophilic attacks occurred at the coordinated tetrazolate rings, involving the reversible – by a protonation deprotonation mechanism – or permanent – upon addition of a methyl moiety – switching of their global net charge from negative to positive and, in particular, the concomitant variation of their photoluminescence output. The combination of the anionic complexes [Ir(F2ppy)2(1,2 BTB)]− or [Ir(ppy)2(1,2 BTB)]− with a deep red emitting (λmax = 686 nm) cationic Ir(III) tetrazole complex such as [IrTPYZ-Me]+, where TPYZ-Me is 2-(2-methyl-2H-tetrazol-5-yl)pyrazine, gave rise to two fully Ir(III)-based soft salts capable of displaying additive and O2-sensitive emission colours, with an almost pure white light obtained by the appropriate choice of the ionic components.

dc.publisherR S C Publications
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT130100033
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT130100463
dc.titleNegatively charged Ir(III) cyclometalated complexes containing a chelating bis-tetrazolato ligand: Synthesis, photophysics and the study of reactivity with electrophiles
dc.typeJournal Article
dcterms.source.volume45
dcterms.source.number32
dcterms.source.startPage12884
dcterms.source.endPage12896
dcterms.source.issn1477-9226
dcterms.source.titleDalton Transactions
curtin.departmentDepartment of Chemistry
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record