Adaptive Array Beamforming Using a Combined LMS-LMS Algorithm
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A new adaptive algorithm, called least mean square- least mean square (LLMS) algorithm, which employs an array image factor, , sandwiched in between two least mean square (LMS) algorithm sections, is proposed for different applications of array beamforming. It can operate with either prescribed or adaptive . The convergence of LLMS algorithm is analyzed for two different operation modes; namely with external reference or self-referencing. The range of step size values for stable operation has been established. Unlike earlier LMS algorithm based techniques, the proposed algorithm derives its overall error signal by feeding back the error signal from the second LMS algorithm stage to combine with that of the first LMS algorithm section.Computer simulation results show that LLMS algorithm is superior in convergence performance over earlier LMS based algorithms, and is quite insensitive to variations in input signal-to-noise ratio and actual step size values used. Furthermore, LLMS algorithm remains stable even when its reference signal is corrupted by additive white Gaussian noise (AWGN). In addition, the proposed LLMS algorithm is robust when operating in the presence of Rayleigh fading. Finally, the fidelity of the signal at the output of an LLMS algorithm beamformer is demonstrated by means of the resultant values of error vector magnitude (EVM) and scatter plots.
Related items
Showing items related by title, author, creator and subject.
-
Srar, Jalal Abdulsayed (2011)In recent years, adaptive or smart antennas have become a key component for various wireless applications, such as radar, sonar and cellular mobile communications including worldwide interoperability for microwave ...
-
Srar, Jalal Abdulsayed; Chung, Kah-Seng; Mansour, Ali (2010)A new adaptive algorithm, called LLMS, which employs an array image factor, AI, sandwiched in between two Least Mean Square (LMS) sections, is proposed for different applications of array beamforming. The convergence of ...
-
Srar, J.; Chung, Kah-Seng; Mansour, A. (2012)This paper studies the influence of the use of finite wordlength on the operation of the LLMS adaptive beamforming algorithm. The convergence behavior of LLMS algorithm, based on the minimum mean square error (MSE), is ...