Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A New LLMS Algorithm for Antenna Array Beamforming

    155590_155590.pdf (384.6Kb)
    Access Status
    Open access
    Authors
    Srar, Jalal Abdulsayed
    Chung, Kah-Seng
    Mansour, Ali
    Date
    2010
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Srar, J.A. and Chung, Kah-Seng and Mansour, A. 2010. A New LLMS Algorithm for Antenna Array Beamforming, 2010 IEEE Wireless Communications and Networking Conference (WCNC 2010), Apr 18 2010. Sydney, NSW: IEEE.
    Source Title
    2010 IEEE Wireless Communications and Networking Conference Proceedings
    Source Conference
    2010 IEEE Wireless Communications and Networking Conference (WCNC 2010)
    DOI
    10.1109/WCNC.2010.5506564
    ISBN
    978-1-4244-6398-5
    School
    Department of Electrical and Computer Engineering
    Remarks

    Copyright © 2010 IEEE This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

    URI
    http://hdl.handle.net/20.500.11937/38749
    Collection
    • Curtin Research Publications
    Abstract

    A new adaptive algorithm, called LLMS, which employs an array image factor, AI, sandwiched in between two Least Mean Square (LMS) sections, is proposed for different applications of array beamforming. The convergence of LLMS algorithm is analyzed, in terms of mean square error, in the presence of Additive White Gaussian Noise (AWGN) for two different modes of operation; namely with either an external reference or self-referencing. Unlike earlier LMS based schemes, which make use of step size adaptation to enhance their performance, the proposed algorithm derives its overall error signal by feeding back the error signal from the second LMS stage to combine with that of the first LMS section.This results in LLMS being less sensitive to variations in input signal-to-noise ratio as well as the step sizes used. Computer simulation results show that the proposed LLMS algorithm is superior in convergence performance over the conventional LMS algorithm as well some of the more recent LMS based algorithms, such as constrained-stability LMS (CSLMS), and Modified Robust Variable Step Size LMS (MRVSS) algorithms. Also, the operation of LLMS remains stable even when its reference signal is corrupted by AWGN. It is also shown that LLMS performs well in the presence of Rayleigh fading.

    Related items

    Showing items related by title, author, creator and subject.

    • Adaptive antenna array beamforming using a concatenation of recursive least square and least mean square algorithms
      Srar, Jalal Abdulsayed (2011)
      In recent years, adaptive or smart antennas have become a key component for various wireless applications, such as radar, sonar and cellular mobile communications including worldwide interoperability for microwave ...
    • Adaptive Array Beamforming Using a Combined LMS-LMS Algorithm
      Srar, Jalal; Chung, Kah-Seng; Mansour, Ali (2010)
      A new adaptive algorithm, called least mean square- least mean square (LLMS) algorithm, which employs an array image factor, , sandwiched in between two least mean square (LMS) algorithm sections, is proposed for different ...
    • The measurement of underwater acoustic noise radiated by a vessel using the vessel's own towed array
      Duncan, Alexander John (2003)
      The work described in this thesis tested the feasibility of using a towed array of hydrophones to: 1. localise sources of underwater acoustic noise radiated by the towvessel, 2. determine the absolute amplitudes of these ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.