Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Insufficient catalytic activity and durability are key barriers to the commercial deployment of low temperature polymer electrolyte membrane (PEM) and direct-methanol fuel cells (DMFCs). Recent observations suggest that carbon-based catalyst support materials can be systematically doped with nitrogen to create strong, beneficial catalyst-support interactions which substantially enhance catalyst activity and stability. Data suggest that nitrogen functional groups introduced into a carbon support appear to influence at least three aspects of the catalyst/support system: 1) modified nucleation and growth kinetics during catalyst nanoparticle deposition, which results in smaller catalyst particle size and increased catalyst particle dispersion, 2) increased support/catalyst chemical binding (or "tethering"), which results in enhanced durability, and 3) catalyst nanoparticle electronic structure modification, which enhances intrinsic catalytic activity. This review highlights recent studies that provide broad-based evidence for these nitrogen-modification effects as well as insights into the underlying fundamental mechanisms. © 2010 The Royal Society of Chemistry.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Cheng, Yi; Liang, J.; Veder, Jean-Pierre; Li, Meng; Chen, S.; Pan, Jian; Song, L.; Cheng, H.; Liu, C.; Jiang, San Ping (2018)© 2018 Wiley-VCH Verlag. Iron-nitrogen-carbon (Fe-N-C) composites have emerged as active and non-precious-metal electrocatalysts for the oxygen reduction reaction (ORR). Here, we developed a simple process to synthesize ...
-
Zhang, H.; Han, L.; Duan, A.; Xu, C.; Zhao, Z.; Wei, Y.; Jiang, G.; Liu, Jian; Wang, D.; Xia, Z. (2017)The micro-mesoporous materials ZF-x (ZSM-5-FDU-12, x = SiO 2 /Al 2 O 3 ) with different molar ratios of SiO 2 /Al 2 O 3 were synthesized by an in situ nano-assembly method with the ZSM-5 precursor serving as the silica ...