The synthesis and degradation of collagenase-degradable poly(2-hydroxyethylmethacrylate)-based hydrogels and sponges for potential applications as scaffolds in tissue engineering
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
A collagenase-cleavable peptide-based crosslinking agent was synthesized and was incorporated into PHEMA sponges, and P[HEMA-co-MeO-PEGMA] gels and sponges [HEMA 2-hydroxyethyl methacrylate, PHEMA = poly(2-hydroxyethyl methacrylate), MeO-PEGMA=poly(ethylene glycol) monomethyl ether methacrylate]. PHEMA and P[HEMA-co-MeO-PEGMA] sponges had polymer droplet morphologies where the dimensions of the morphological features were three to five times larger compared to sponges that were crosslinked with tetraethylene glycol dimethacrylate (TEGDMA), while the P[HEMA-co-MeO-PEGMA] gels had similar morphologies regardless of the crosslinking agent. The differences in the dimensions of the morphologies of the sponges were attributed to differences in hydrophilicities of the crosslinking agent. When incubated in a collagenase solution, PHEMA sponges did not degrade, but P[HEMA-co-MeO-PEGMA] gels took 28 days to degrade and the P[HEMA-co-MeO-PEGMA] sponges took 101 days to degrade to 8% dry weight remaining. A cytotoxicity assay showed that the hydrogels do not elicit any cytotoxic response in vitro.
Related items
Showing items related by title, author, creator and subject.
-
Casadio, Y.; Brown, David; Chirila, T.; Kraatz, H.; Baker, M. (2010)PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugate hydrogels [where PHEMA ) poly(2-hydroxyethyl methacrylate; PEGMA ) poly(ethylene glycol) methacrylate] were readily prepared via photoinitiated free-radical ...
-
Baker, M.; Brown, David; Casadio, Y.; Chirila, T. (2009)This paper describes the application of a photoinitiated polymerisation-induced phase separationmethod to the preparation of PHEMA and P[HEMA-co-(MeO-PEGMA)] hydrogels. PHEMA sponges having a morphology of agglomerated ...
-
Li, Chao; Liu, S.; Zheng, Y.; Lou, Xia (2013)Poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels are well known for their applications as vision correction devices including contact lenses and intraocular lenses. Like most other synthetic hydrogels, pHEMA is bio-inert ...