Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Collagen modified porous pHEMA–TiO2 composite hydrogels for tissue engineering

    Access Status
    Fulltext not available
    Authors
    Li, Chao
    Liu, S.
    Zheng, Y.
    Lou, Xia
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, Chao and Liu, Shaoqong and Zheng, Yufeng and Lou, Xia. 2013. Collagen modified porous pHEMA–TiO2 composite hydrogels for tissue engineering. Journal of Controlled Release. 172 (1): p. e143.
    Source Title
    Journal of Controlled Release
    DOI
    10.1016/j.jconrel.2013.08.232
    ISSN
    0168-3659
    URI
    http://hdl.handle.net/20.500.11937/40022
    Collection
    • Curtin Research Publications
    Abstract

    Poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels are well known for their applications as vision correction devices including contact lenses and intraocular lenses. Like most other synthetic hydrogels, pHEMA is bio-inert and lacks cell binding sites for extended applications as tissue regeneration scaffolds. Collagen has been extensively used to enhance the cellular activities of biomaterials. However, modification with collagen molecules is often limited to the surface of hydrogels [1]. In this work, we report the preparation of collagen modified porous pHEMA–TiO2 composite hydrogels through the formation of a semi-interpenetrating polymer network and the observation of significantly improved cell activities on the modified pHEMA hydrogels. pHEMA and pHEMA–TiO2 composite hydrogels were first produced using a reported method [2]. Collagen modification was carried out by crosslinking collagen molecules (10 mg/ml) in the presence of hydrated pHEMA and pHEMA–TiO2, using 0.25% glutaraldehyde. The resulting hydrogels contain interconnected pores. Fibrous networks of collagen were observed on the cross section of the modified hydrogels (Fig. 1a, b). FTIR and UV–vis spectra also demonstrated the presence of the collagen molecules in the modified hydrogel matrices (data not shown). All hydrogels were well tolerated by 3T3 mouse fibroblast cells. The growth of both 3T3 fibroblast and hMSCs was significantly enhanced and accelerated only after incorporation of the collagen into the hydrogel matrices (Fig. 1c–f). Migration and in-growth of hMSCs into the collagen bonded hydrogel scaffolds were also well demonstrated in the laser confocal images which is of significant importance for the application of any scaffolding material in the regeneration of tissues.

    Related items

    Showing items related by title, author, creator and subject.

    • Synthesis and evaluation of porous composite hydrogels for tissue engineering applications
      Li, Chao (2012)
      The purpose of this dissertation was to synthesize and evaluate porous poly(2- hydroxyethyl methacrylate) (PHEMA) and PHEMA composite hydrogels containing various concentrations of titanium dioxide (TiO2) nanoparticles, ...
    • Biodegradation of Poly(2-hydroxyethyl methacrylate) (PHEMA) and Poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} Hydrogels ContainingPeptide-Based Cross-Linking Agents
      Casadio, Y.; Brown, David; Chirila, T.; Kraatz, H.; Baker, M. (2010)
      PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugate hydrogels [where PHEMA ) poly(2-hydroxyethyl methacrylate; PEGMA ) poly(ethylene glycol) methacrylate] were readily prepared via photoinitiated free-radical ...
    • The synthesis and degradation of collagenase-degradable poly(2-hydroxyethylmethacrylate)-based hydrogels and sponges for potential applications as scaffolds in tissue engineering
      Paterson, S.; Shadforth, A.; Brown, David; Madden, P.; Chirila, T.; Baker, M. (2012)
      A collagenase-cleavable peptide-based crosslinking agent was synthesized and was incorporated into PHEMA sponges, and P[HEMA-co-MeO-PEGMA] gels and sponges [HEMA 2-hydroxyethyl methacrylate, PHEMA = poly(2-hydroxyethyl ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.