A double-layer composite electrode based on SrSc0.2Co0.8O3-d perovskite with improved performance in intermediate temperature solid oxide fuel cells
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Dual-layer composite electrodes consisting of a layer adjoining to an Sm0.2Ce0.8O1.9 (SDC) electrolyte composed of 70 wt.% SrSc0.2Co0.8O3-d + 30 wt.% Sm0.2Ce0.8O1.9 (SScC + SDC composite) and a second layer composed of 70 wt.% SrSc0.2Co0.8O3-d + 30 wt.% Sm0.5Sr0.5CoO3-d (SScC + SmSC composite) were fabricated and investigated as potential cathodes in intermediate temperature solid-oxide fuel cells. Thermo-mechanical compatibility between the two electrode layers and between the electrode and the electrolyte were examined by SEM, XRD and EIS. After sintering, no clear boundary between SScC + SDC and SScC + SmSC layers was observable by SEM. The repeated thermal cycling didn't induce the delamination of the electrode from the electrolyte nor the formation of cracks within the electrode. As a result, stable electrode performance was achieved during thermal cycling and long-term operation. Symmetric cell tests demonstrated that the dual-layer electrode with a ~10-µm SScC + SDC layer and a ~50-µm SScC + SmSC layer (SScC + SDC/SScC + SmSC (1:5)) had the lowest electrode-polarization resistance among those tested. Anode-supported fuel cells with an SDC electrolyte and SScC + SDC/SScC + SmSC (1:5) cathode were fabricated. Peak power density as high as 1326 mW cm-2 was achieved at 650 °C, which was higher than for similar fuel cells with a single-layer SScC + SDC or an SScC + SmSC composite electrode. © 2010 Professor T. Nejat Veziroglu.
Related items
Showing items related by title, author, creator and subject.
-
Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...
-
He, Shuai; Zhang, Qi; Maurizio, Giulio; Catellani, Lorenzo; Chen, K.; Chang, Q.; Santarelli, M.; Jiang, San Ping (2018)© Copyright 2018 American Chemical Society. Bismuth-based oxides exhibit outstanding oxygen ionic conductivity and fast oxygen surface kinetics and have shown great potential as a highly active component for electrode ...
-
Ai, Na; Li, N.; Rickard, William; Cheng, Yi; Chen, Kongfa; Jiang, San Ping (2017)Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y2O3-ZrO2 (YSZ) electrolyte with no high-temperature pre-sintering steps. ...