Show simple item record

dc.contributor.authorLi, S.
dc.contributor.authorChen, G.
dc.contributor.authorTeo, Kok Lay
dc.contributor.authorYang, X.
dc.date.accessioned2017-01-30T13:40:00Z
dc.date.available2017-01-30T13:40:00Z
dc.date.created2010-04-14T20:02:42Z
dc.date.issued2003
dc.identifier.citationLi, S., and Chen, G., and Teo, K., and Yang, X. 2003. Generalized minimax inequalities for set-valued mappings. Journal of Mathematical Analysis and Applications. 281 (2): pp. 707-723.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/33891
dc.identifier.doi10.1016/S0022-247X(03)00197-5
dc.description.abstract

In this paper, we study generalized minimax inequalities in a Hausdorff topological vector space, in which the minimization and the maximization of a two-variable set-valued mapping are alternatively taken in the sense of vector optimization. We establish two types of minimax inequalities by employing a nonlinear scalarization function and its strict monotonicity property. Our results are obtained under weaker convexity assumptions than those existing in the literature. Several examples are given to illustrate our results.

dc.publisherAcademic Press
dc.titleGeneralized minimax inequalities for set-valued mappings
dc.typeJournal Article
dcterms.source.volume281
dcterms.source.startPage707
dcterms.source.endPage723
dcterms.source.issn10960813
dcterms.source.titleJ. Math. Anal. Appl.
curtin.note

Copyright © 2003 Elsevier B.V. All rights reserved

curtin.accessStatusOpen access
curtin.facultySchool of Science and Computing
curtin.facultyDepartment of Mathematics and Statistics
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record