Show simple item record

dc.contributor.authorLuo, X.
dc.contributor.authorHeck, B.
dc.contributor.authorAwange, Joseph
dc.date.accessioned2017-01-30T13:41:12Z
dc.date.available2017-01-30T13:41:12Z
dc.date.created2014-02-16T20:00:23Z
dc.date.issued2013
dc.identifier.citationLuo, X. and Heck, B. and Awange, J.L. 2013. Improving the estimation of zenith dry tropospheric delays using regional surface meteorological data. Advances in Space Research. 52 (12): pp. 2204-2214.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/34092
dc.identifier.doi10.1016/j.asr.2013.09.005
dc.description.abstract

Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.

dc.publisherPergamon
dc.subjectLinear regression
dc.subjectRegional surface meteorological data
dc.subjectOutlier detection
dc.subjectGNSS meteorology
dc.subjectZenith tropospheric delay
dc.titleImproving the estimation of zenith dry tropospheric delays using regional surface meteorological data
dc.typeJournal Article
dcterms.source.volume52
dcterms.source.startPage2204
dcterms.source.endPage2214
dcterms.source.issn0273-1177
dcterms.source.titleAdvances in Space Research
curtin.note

NOTICE: This is the author’s version of a work that was accepted for publication in Advances in Space Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Advances in Space Research, Vol. 52, Issue 12. (2013). doi: 10.1016/j.asr.2013.09.005

curtin.department
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record