Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Disinfection by-products from halogenation of aqueous solutions of terpenoids

    145527_145527.pdf (294.8Kb)
    Access Status
    Open access
    Authors
    Joll, Cynthia
    Alessandrino, Michael
    Heitz, Anna
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Joll, Cynthia A. and Alessandrino, Michael J. and Heitz, Anna. 2010. Disinfection by-products from halogenation of aqueous solutions of terpenoids. Water Research. 44 (1): pp. 232-242.
    Source Title
    Water Research
    DOI
    10.1016/j.watres.2009.09.003
    ISSN
    00431354
    Faculty
    Department of Applied Chemistry
    School of Science and Computing
    Faculty of Science and Engineering
    Remarks

    The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/309/description#description . Copyright © 2010 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/34129
    Collection
    • Curtin Research Publications
    Abstract

    We report the formation of trihalomethanes and other disinfection by-products from four polyfunctional terpenoids during simulated chlorination of natural waters. Complex suites of products were identified by closed loop stripping analysis (CLSA)/gas chromatography-mass spectrometry (GC-MS) from halogenation of b-carotene and retinol. b-Ionone appeared to be a key intermediate in the halogenation of b-carotene and retinol, reacting further under the reaction conditions to produce trans-b-ionone-5,6-epoxide and b-cyclocitral. Halogenation of the four terpenoids also produced trihalomethanes (THMs), most likely through haloform reaction on methyl ketone groups within many of the intermediates. Since halogenation of retinol produced a significant quantity of THMs at a slow reaction rate, retinol-based structures may possibly contribute to the slow reacting phase of THM formation in natural waters. Two polyhydroxyphenol model compounds were halogenated for comparison. The only products identified by CLSA/GC-MS from halogenation of 40,5,7- trihydroxyflavanone and ellagic acid were THMs. 40,5,7-Trihydroxyflavanone rapidly produced THMs, with an extremely high molar yield (94%) at pH 7. Terpenoids of the b-ionone and retinol type should be considered to be significant THM precursors, while 40,5,7-trihydroxyflavanone has been shown to be an extremely significant THM precursor, potentially present within natural organic matter in water treatment processes and distribution systems

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates
      Kristiana, Ina; Gallard, H.; Joll, Cynthia; Croue, J. (2009)
      The formation of disinfection by-products (DBPS) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.