Adsorption-induced deformation of microporous carbons: Pore size distribution effect
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Wepresent a thermodynamic model of adsorption-induced deformation of microporous carbons. The model represents the carbon structure as a macroscopically isotropic disordered three-dimensional medium composed of stacks of slit-shaped pores of different sizes embedded in an incompressible amorphous matrix. Adsorption stress in pores is calculated by means of Monte Carlo simulations. The proposed model reproduces qualitatively the experimental nonmonotonic dilatometric deformation curve for argon adsorption on carbide-derived activated carbon at 243 K and pressure up to 1.2 MPa. The elastic deformation (contraction at low pressures and swelling at higher pressures) results from the adsorption stress that depends strongly on the pore size. The pore size distribution determines the shape of the deformation curve, whereas the bulk modulus controls the extent of the sample deformation.
Related items
Showing items related by title, author, creator and subject.
-
Kowalczyk, Piotr; Furmaniak, S.; Gauden, P.; Terzyk, A. (2010)Applying the thermodynamic model of adsorption-induced deformation of microporous carbons developed recently (Kowalczyk, P.; Ciach, A.; Neimark, A. Langmuir 2008, 24, 6603), we study the deformation of carbonaceous amorphous ...
-
Kowalczyk, Poitr; Tanaka, H.; Holyst, R.; Kaneko, K.; Ohmori, T.; Miyamoto, J. (2005)Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs ...
-
Abid, Hussein Rasool (2012)This scholarly research investigates synthesis of different Zr-MOFs and some of Al- MOFs and studies their charcateristics and applications in capture or separation of carbon dioxide. CO2 is consdered as a main gas in ...