Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A new nickel-ceria composite for direct-methane solid oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Zhu, H.
    Wang, Wei
    Ran, R.
    Shao, Zongping
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhu, H. and Wang, W. and Ran, R. and Shao, Z. 2013. A new nickel-ceria composite for direct-methane solid oxide fuel cells. International Journal of Hydrogen Energy. 38: pp. 3741-3749.
    Source Title
    International Journal of Hydrogen Energy
    ISSN
    0360-3199
    URI
    http://hdl.handle.net/20.500.11937/34671
    Collection
    • Curtin Research Publications
    Abstract

    Various Ni-LaxCe1-xOy composites were synthesized and their catalytic activity, catalytic stability and carbon deposition properties for steam reforming of methane were investigated. Among the catalysts, Ni-La0.1Ce0.9Oy showed the highest catalytic performance and also the best coking resistance. The Ni-LaxCe1-xOy catalysts with a higher Ni content were further sintered at 1400 degrees Celcius and investigated as anodes of solid oxide fuel cells for operating on methane fuel. The Ni-La0.1Ce0.9Oy anode presented the best catalytic activity and coking resistance in the various NieLaxCe1-xOy catalysts with different ceria contents. In addition, the Ni-La0.1Ce0.9Oy also showed improved coking resistance over a Ni-SDC cermet anode due to its improved surface acidity. A fuel cell with a Ni-La0.1Ce0.9Oy anode and a catalyst yielded a peak power density of 850 mW cm-2 at 650 degrees Celcius while operating on a CH4-H2O gas mixture, which was only slightly lower than that obtained while operating on hydrogen fuel. No obvious carbon deposition or nickel aggregation was observed on the Ni-La0.1Ce0.9Oy anode after the operation on methane. Such remarkable performances suggest that nickel and La-doped CeO2 composites are attractive anodes for direct hydrocarbon SOFCs and might also be used as catalysts for the steam reforming of hydrocarbons.

    Related items

    Showing items related by title, author, creator and subject.

    • Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane
      Wang, W.; Ran, R.; Shao, Zongping (2011)
      Ni-Al2O3 catalyst is modified with Li 2O3, La2O3 and CaO promoters to improve its resistance to coking. These catalysts are used as the materials of the anode catalyst layer in solid-oxide fuel cells operating on methane. ...
    • In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
      Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)
      © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...
    • A comprehensive evaluation of a Ni-Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode
      Wang, W.; Su, C.; Wu, Y.; Ran, R.; Shao, Zongping (2010)
      An inexpensive 7 wt.% Ni-Al2O3 composite is synthesized by a glycine-nitrate process and systematically investigated as anode catalyst layer of solid-oxide fuel cells operating on methane fuel by examining its catalytic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.