Robust and Diagnostic Statistics: A Few Basic Concepts in Mobile Mapping Point Cloud Data Analysis
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
It is impractical to imagine point cloud data obtained from laser scanner based mobile mapping systems without outliers. The presence of outliers affects the most often used classical statistical techniques used in laser scanning point cloud data analysis and hence the consequent results of point cloud processing are inaccurate and non-robust. Therefore, it is necessary to use robust and/or diagnostic statistical methods for reliable estimates, modelling, fitting and feature extraction. In spite of the limitations of classical statistical methods, an extensive literature search shows not much use of robust techniques in point cloud data analysis. This paper presents the basic ideas on mobile mapping technology and point cloud data, investigates outlier problems and presents some applicable robust and diagnostic statistical approaches. Importance and performance of robust and diagnostic techniques are shown for planar surface fitting and surface segmentation by using several mobile mapping real point cloud data examples.
Related items
Showing items related by title, author, creator and subject.
-
Nurunnabi, Abdul; Belton, David; West, Geoff (2012)Objectives: Surface reconstruction and fitting for geometric primitives and three Dimensional (3D) modeling is a fundamental task in the field of photogrammetry and reverse engineering. However it is impractical to get ...
-
Nurunnabi, Abdul; Belton, David; West, Geoff (2016)This paper investigates the problems of outliers and/or noise in surface segmentation and proposes a statistically robust segmentation algorithm for laser scanning 3-D point cloud data. Principal component analysis ...
-
Nurunnabi, A.; Belton, David; West, Geoff (2014)This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis ...