Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Ten ice-sheet models are used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea-level change. In most cases, the ice volume above flotation lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments, suggesting that nonlinear feedbacks are modest. Our models indicate that Greenland is more sensitive than Antarctica to likely atmospheric changes in temperature and precipitation, while Antarctica is more sensitive to increased ice-shelf basal melting. An experiment approximating the Intergovernmental Panel on Climate Change’s RCP8.5 scenario produces additional first-century contributions to sea level of 22.3 and 8.1cm from Greenland and Antarctica, respectively, with a range among models of 62 and 14 cm, respectively. By 200 years, projections increase to 53.2 and 26.7 cm, respectively, with ranges of 79 and 43 cm. Linear interpolation of the sensitivity results closely approximates these projections, revealing the relative contributions of the individual forcings on the combined volume change and suggesting that total ice-sheet response to complicated forcings over 200 years can be linearized.
Related items
Showing items related by title, author, creator and subject.
-
Nowicki, S.; Bindschadler, R.; Abe-Ouchi, A.; Aschwanden, A.; Bueler, E.; Choi, H.; Fastook, J.; Granzow, G.; Greve, R.; Gutowski, G.; Herzfeld, U.; Jackson, C.; Johnson, J.; Khroulev, C.; Larour, E.; Levermann, A.; Lipscomb, W.; Martin, M.; Morlighem, M.; Parizek, B.; Pollard, D.; Price, S.; Ren, Diandong; Rignot, E.; Saito, F.; Sato, T.; Seddik, H.; Seroussi, H.; Takahashi, K.; Walker, R.; Wang, W. (2013)The Sea-level Response to Ice Sheet Evolution (SeaRISE) effort explores the sensitivity of the current generation of ice sheet models to external forcing to gain insight into the potential future contribution to sea level ...
-
Szeto, Pui Yuk Grace (2003)Computer technology has advanced rapidly in the past few decades and computers have become a very important and powerful tool in our everyday lives. Prolonged computer use by office workers has been reported to result in ...
-
Nowicki, S.; Bindschadler, R.; Abe-Ouchi, A.; Aschwanden, A.; Bueler, E.; Choi, H.; Fastook, J.; Granzow, G.; Greve, R.; Gutowski, G.; Herzfeld, U.; Jackson, C.; Johnson, J.; Khroulev, C.; Larour, E.; Levermann, A.; Lipscomb, W.; Martin, M.; Morlighem, M.; Parizek, B.; Pollard, D.; Price, S.; Ren, Diandong; Rignot, E.; Saito, F.; Sato, T.; Seddik, H.; Seroussi, H.; Takahashi, K.; Walker, R.; Wang, W. (2013)Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice ...