Phase behaviour of gelatin/polydextrose mixtures at high levels of solids
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This investigation focuses on understanding the phase behaviour of gelatin when mixed with polydextrose (co-solute) primarily at high solid concentrations. The experimental work was carried out using small deformation dynamic oscillation in shear, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, wide angle X-ray diffraction and environmental scanning electron microscopy. A progression in the mechanical strength and thermal stability of the gelatin network was observed with the addition of polydextrose to the system. Combined thermomechanical and microscopy evidence argues for the development of phase separation phenomenon between protein and co-solute in high-solid preparations, where gelatin maintains helical conformation to provide network integrity as well as glassy consistency at subzero temperature. At the high solids regime, glassy consistency was treated with theoretical frameworks from the synthetic polymer research to pinpoint the glass transition temperature of the system.
Related items
Showing items related by title, author, creator and subject.
-
Eroglu, E.; Wijihastuti, R.; Grenik, E.; Vadiveloo, A.; Moheimani, N.; Lou, Xia (2018)BACKGROUND: Algal growth on solid surfaces confers the advantage of combining the algal harvesting and bioprocessing steps at a single stage, in addition to the easier handling of the immobilized cells that occupy a reduced ...
-
Wang, H.; Chu, C.; Cai, R.; Jiang, S.; Zhai, L.; Lu, J.; Li, Xingjiang; Jiang, S. (2015)The objective of this study was to develop a novel three-dimensional biomimetic gelatin/multiwalled carbon nanotubes/hydroxyapatite (gelatin/MWNTs/HA) nanofibrous scaffold via electrospinning technique for bone tissue ...
-
McInnes, J.; Alderman, R.; Lea, M.; Raymond, B.; Deagle, B.; Phillips, R.; Stanworth, A.; Thompson, D.; Catry, P.; Weimerskirch, H.; Suazo, C.; Gras, M.; Jarman, Simon (2017)© 2017 John Wiley & Sons Ltd Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets ...