Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis

    Access Status
    Fulltext not available
    Authors
    Wang, Zhouhong
    McDonald, Armando
    Westerhof, Roel
    Kersten, Sascha
    Cuba-Torres, Christian
    Ha, Su
    Pecha, Brennan
    Garcia-Perez, Manuel
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, Zhouhong and McDonald, Armando and Westerhof, Roel and Kersten, Sascha and Cuba-Torres, Christian and Ha, Su and Pecha, Brennan and Garcia-Perez, Manuel. 2013. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. Journal of Analytical and Applied Pyrolysis. 100: pp. 56-66.
    Source Title
    Journal of Analytical and Applied Pyrolysis
    DOI
    10.1016/j.jaap.2012.11.017
    ISSN
    0165-2370
    URI
    http://hdl.handle.net/20.500.11937/3635
    Collection
    • Curtin Research Publications
    Abstract

    The effect of cellulose crystallinity on the formation of a liquid intermediate and on its thermal degradation was studied thermogravimetrically and by Py-GC/MS using a control cellulose (Avicel, crystallinity at 60.5%) and ball-milled Avicel (low cellulose crystallinity at 6.5%). The crystallinity of the materials studied was quantified by XRD and FTIR. Thermogravimetric analyses (TGA) show the samples with lower crystallinity start to degrade at lower temperatures, exhibiting sharper DTG curves and lower thermal degradation activation energies. Scanning electron microscopy (SEM) studies of the solid residues formed in TGA tests showed that, while the conversion of the ball-milled cellulose (mostly amorphous cellulose)occurs through the formation of a liquid intermediate, in the conversion of the control the fibrous structure is conserved. Py-GC/MS studies showed major differences in the thermal behavior of the samples studied. At 300 degrees C, amorphous cellulose yielded more levoglucosan. At temperatures between 350 and 450 degrees C, higher yields of mono-anhydrosugars (levoglucosan and levoglucosenone) were obtained with the samples with higher crystallinity (control). The ball-milled cellulose produced more 5-(hydroxymethyl) furfural, 5-methylfurfural and furfural. The higher yields of these compounds are due to the acceleration of dehydration reactions when a liquid phase intermediate was formed. Fragmentation reactions responsible for the formation of light compounds (glycoaldehyde, acetic acid, methyl-vinyl-ketone and acetol)and the reactions responsible for the formation of cyclopentane do not seem to be affected by cellulose crystallinity and by the formation of a liquid intermediate.

    Related items

    Showing items related by title, author, creator and subject.

    • Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water
      Yu, Yun (2009)
      Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
    • Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis
      Wang, Z.; Pecha, B.; Westerhof, Roel; Kersten, S.; Li, Chun-Zhu; McDonald, A.; Garcia-Perez, M. (2014)
      This study reports changes in solid phase composition when samples of Avicel cellulose (crystallinity: 60.5%) and ball-milled microcrystalline cellulose (crystallinity: 6.5%) were subjected to pyrolysis in a spoon reactor. ...
    • Effect of cellulose-lignin interactions on char structural changes during fast pyrolysis at 100-350 °c
      Chua, Y.W.; Wu, Hongwei ; Yu, Yun (2021)
      This study investigates the cellulose-lignin interactions during fast pyrolysis at 100-350°C for better understanding fundamental pyrolysis mechanism of lignocellulosic biomass. The results show that co-pyrolysis of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.