Reactive power control of DFIG wind power system connected to IEEE 14 bus distribution network
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Remarks
Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEEmust be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
With the increasing penetration of distributed wind turbines (WTs) in distribution systems, utilities are requiring these renewable resources to provide reactive power supports during steady-state and transient operating conditions. WTs with doubly fed induction generators (DFIGs) are able to independently control active and reactive power. The reactive power capability is subjected to several limitations resulting from the voltage, current, and speed, which changes with the operating point. This paper examines the reactive power control capability of DFIG-based WT by connecting it to the IEEE 14 bus distribution system. The stator-flux-oriented vector control principle is applied to build a model of the DFIG in dq synchronous coordination system, and the PSCAD/EMTDC simulation software is employed to investigate its performance in providing reactive power support to the grid.
Related items
Showing items related by title, author, creator and subject.
-
Hazari, M.; Mannan, M.; Muyeen, S.M.; Umemura, A.; Takahashi, R.; Tamura, J. (2017)Wind farm (WF) grid codes require wind generators to have low voltage ride through (LVRT) capability, which means that normal power production should be resumed quickly once the nominal grid voltage has been recovered. ...
-
Mohseni, Mansour (2011)A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the ...
-
Abdou, A.; Abu-Siada, Ahmed; Pota, H. (2012)The use of doubly fed induction generators (DFIGs) in large wind energy conversion systems (WECS) has significantly increased during the last few years. The DFIG is interfaced to the AC network through a grid side voltage ...