Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Energy Redistribution between the Mean and Pulsating Flow Field in a Separated Flow Region

    Access Status
    Fulltext not available
    Authors
    Dol, Sharul Sham
    Salek, M.
    Martinuzzi, R.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dol, S.S. and Salek, M. and Martinuzzi, R. 2014. Energy Redistribution between the Mean and Pulsating Flow Field in a Separated Flow Region. Journal of Fluids Engineering. 136 (11): Article 111105.
    Source Title
    Journal of Fluids Engineering
    DOI
    10.1115/1.4026923
    ISSN
    0098-2202
    School
    Curtin Sarawak
    URI
    http://hdl.handle.net/20.500.11937/36876
    Collection
    • Curtin Research Publications
    Abstract

    One of the main features of the backward-facing step (BFS) low frequency pulsatile flow is the unsteadiness due to the convection of vortical (coherent) structures, which characterize the flow dynamics in the shear layer. The physics of the flow field is analyzed by looking at energy redistribution between the mean and pulsating flow field obtained via a particle image velocimeter (PIV) using the concept of a triple decomposition. The total fluctuating kinetic budget is calculated and discussed for a mean Reynolds number of 100 and for 0.035 = St = 2.19. The effects that these coherent structures have on the fluctuating kinetic energy production, dissipation, and transport mechanism are examined. The results provide insight into the physics of the flow and suggest reasons for vortex growth and decay. Fluctuating kinetic energy is generally produced at the separated shear layers and transported towards the core flow and then to the upper and lower walls where viscosity dissipates the energy. The remaining energy is transported streamwise and decays as it is convected downstream (St = 0.4 and 1 cases). It was also found that the pressure-velocity correlation diffusion plays a significant role in the transport of kinetic energy and Reynolds stresses, especially in the separated shear layer. More energy was dissipated at the walls for the high Strouhal number case St = 2.19 due to the transverse pressure diffusion term being increasingly dominant. This could be the reason why the convected primary vortices were much smaller in size and weaker with no upper wall vortices formed at this pulsation Strouhal number. The shear production for St = 0.035 was very minimal; thus, the vortices died down quickly even before the shedding could happen. Finally, the pressure-strain correlation term was found to be significant in redistributing the kinetic energy from u-component to v-component.

    Related items

    Showing items related by title, author, creator and subject.

    • Effects of pulsation to the mean field and vortex development in a backward-facing step flow
      Dol, Sharul Sham; Mehdi Salek, M.; Martinuzzi, R. (2014)
      This work is concerned with the behavior of pulsatile flows over a backward-facing step geometry. The paper mainly focuses on the effects of the pulsation frequency on the vortex development of a 2:1 backward-facing step ...
    • Granular vortices: Identification, characterization and conditions for the localization of deformation
      Tordesillas, A.; Pucilowski, S.; Lin, Qun; Peters, J.; Behringer, R. (2016)
      We relate the micromechanics of vortex evolution to that of force chain buckling and, on this basis, formulate the conditions for strain localization in a continuum model of dense granular media. Using the traditional ...
    • Characteristics of energy production and dissipation around a bubble rising in water
      Gumulya, M.; Joshi, J.; Utikar, Ranjeet; Evans, G.; Pareek, Vishnu (2019)
      © 2018 A numerical simulation on the rise behaviour of a bubble rising in stagnant water at Re ˜ 800–1300 has been conducted. It is found that vorticity generated at the side of the bubble is transferred to the wake region, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.