Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effects of pulsation to the mean field and vortex development in a backward-facing step flow

    Access Status
    Fulltext not available
    Authors
    Dol, Sharul Sham
    Mehdi Salek, M.
    Martinuzzi, R.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dol, S.S. and Mehdi Salek, M. and Martinuzzi, R. 2014. Effects of pulsation to the mean field and vortex development in a backward-facing step flow. Journal of Fluids Engineering. 136 (1): Article: 011001.
    Source Title
    Journal of Fluids Engineering
    DOI
    10.1115/1.4025608
    ISSN
    0098-2202
    School
    Curtin Sarawak
    URI
    http://hdl.handle.net/20.500.11937/41177
    Collection
    • Curtin Research Publications
    Abstract

    This work is concerned with the behavior of pulsatile flows over a backward-facing step geometry. The paper mainly focuses on the effects of the pulsation frequency on the vortex development of a 2:1 backward-facing step for mean Reynolds number of 100 and for 0.035 ≤ St ≤ 2.19. The dependence of the flow field on the Reynolds number (Re = 100 and 200) was also examined for a constant Strouhal number, St of 1. A literature survey was carried out and it was found that the pulsation modifies the behavior of the flow pattern compared to the steady flow. It was shown in the present work that the inlet pulsation generally leads to differences in the mean flow compared to the steady field although the inlet bulk velocity is the same due to energy redistribution of the large-scale vortices, which result in nonlinear effects. The particle-image velocimetry results show that the formation of coherent structures, dynamical shedding, and transport procedure are very sensitive to the level of pulsation frequencies. For low and moderate inlet frequencies, 0.4 ≤ St ≤ 1, strong vortices are formed and these vortices are periodically advected downstream in an alternate pattern. For very low inlet frequency, St = 0.035, stronger vortices are generated due to an extended formation time, however, the slow formation process causes the forming vortices to decay before shedding can happen. For high inlet frequencies, St ≥ 2.19, primary vortex is weak while no secondary vortex is formed. Flow downstream of the expansion recovers quickly. For Re = 200, the pattern of vortex formation is similar to Re = 100. However, the primary and secondary vortices decay more slowly and the vortices remain stronger for Re = 200. The strength and structure of the vortical regions depends highly on St, but Re effects are not negligible.

    Related items

    Showing items related by title, author, creator and subject.

    • Energy Redistribution between the Mean and Pulsating Flow Field in a Separated Flow Region
      Dol, Sharul Sham; Salek, M.; Martinuzzi, R. (2014)
      One of the main features of the backward-facing step (BFS) low frequency pulsatile flow is the unsteadiness due to the convection of vortical (coherent) structures, which characterize the flow dynamics in the shear layer. ...
    • Analysis of pulsatile flow in a separated flow region
      Salek, M.; Dol, Sharul sham; Martinuzzi, R. (2009)
      A Backward-Facing Step (BFS) is widely used as an in-vitro model to investigate the influence of flow separation and recirculation observed in biomedical devices, arterial bifurcations and stenoses. In this study we ...
    • Heat transfer and fluid flow characteristics of synthetic jets
      Jagannatha, Deepak (2009)
      This thesis presents a fundamental research investigation that examines the thermal and fluid flow behaviour of a special pulsating fluid jet mechanism called synthetic jet. It is envisaged that this novel heat transfer ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.