Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Numerical simulation of pounding damage to bridge structures under spatially varying ground motions

    Access Status
    Fulltext not available
    Authors
    Bi, Kaiming
    Hao, Hong
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bi, K. and Hao, H. 2013. Numerical simulation of pounding damage to bridge structures under spatially varying ground motions. Engineering Structures. 46: pp. 62-76.
    Source Title
    Engineering Structures
    DOI
    10.1016/j.engstruct.2012.07.012
    ISSN
    0141-0296
    URI
    http://hdl.handle.net/20.500.11937/37270
    Collection
    • Curtin Research Publications
    Abstract

    Previous studies of pounding responses of bridge structures to seismic loadings are usually based on the point to point pounding assumption by using the simplified lumped mass model or beam-column element model. It has been found these simplified models can be used to calculate bridge pounding response with consideration of only the longitudinal excitation. In a real bridge structure under seismic loading, pounding could take place along the entire or part of surfaces of the adjacent segments. Moreover, torsional response of the adjacent decks owing to the asymmetric deck or induced by spatially varying transverse ground motions at multiple bridge supports may result in eccentric poundings between adjacent bridge decks. A detailed 3D finite element model is necessary to consider the surface to surface and torsional response induced eccentric poundings and the corresponding damage. This paper performs numerical simulations of pounding damage between bridge girders and between bridge girder and the corresponding abutment of a two-span simply-supported bridge to spatially varying ground motions based on a detailed 3D finite element model by using the explicit finite element code LS-DYNA. The dislocation and unseating potentials of the bridge are also modelled. The bridge components including the bridge girders, abutments, pier, bearings, longitudinal reinforcement bars and stirrups are included in the model. The non-linear material behaviour including the strain rate effects of concrete and steel rebar are considered. The spatially varying ground motions are stochastically simulated. The damage mechanism of the bridge under spatially varying seismic loadings is examined. Numerical results show that the method adopted in the present paper can realistically capture the seismic induced damage of bridge structures.

    Related items

    Showing items related by title, author, creator and subject.

    • 3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions
      Bi, Kaiming; Hao, Hong; Chouw, N. (2013)
      Previous studies of pounding responses of adjacent bridge structures under seismic excitation were usually based on the simplified lumped mass model or beamcolumn element model. Consequently, only 1D point to point pounding, ...
    • Experimental and three-dimensional finite element method studies on pounding responses of bridge structures subjected to spatially varying ground motions
      Li-Xiang, H.; Shrestha, Bipin; Hao, Hong; Bi, Kaiming; Ren, Wei-Xin (2016)
      Pounding and unseating damages to bridge superstructures have been commonly observed in many previous major earthquakes. These damages can essentially attribute to the large closing or opening relative displacement between ...
    • Numerical Study of the Seismic Responses of Precast Segmental Column Bridge under Spatially Varying Ground Motions
      Zhao, L.; Hao, Hong; Bi, Kaiming; Li, X. (2018)
      Compared with traditional monolithic columns, precast segmental columns can significantly reduce the residual displacement after a severe earthquake. Previous studies of precast segmental columns mainly focus on the column ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.