Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions

    204286_114371_PUB-SE-DCE-SL-80071-1_paper.pdf (4.912Mb)
    Access Status
    Open access
    Authors
    Bi, Kaiming
    Hao, Hong
    Chouw, N.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bi, K. and Hao, H. and Chouw, N. 2013. 3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions. Advances in Structural Engineering. 16 (4): pp. 619-640.
    Source Title
    Advances in Structural Engineering: an international journal
    DOI
    10.1260/1369-4332.16.4.619
    ISSN
    1369-4332
    Remarks

    Copyright © 2013 Multi-Science Publishing. Reproduced with permission

    URI
    http://hdl.handle.net/20.500.11937/47124
    Collection
    • Curtin Research Publications
    Abstract

    Previous studies of pounding responses of adjacent bridge structures under seismic excitation were usually based on the simplified lumped mass model or beamcolumn element model. Consequently, only 1D point to point pounding, which is usually in the longitudinal direction of the bridge, could be considered. In reality, pounding could occur along the entire surfaces of the adjacent bridge structures. Moreover, spatially varying transverse ground motions generate torsional responses of bridge decks and these responses may cause eccentric poundings. That is why many pounding damages occurred at corners of the adjacent decks as observed in almost all previous major earthquakes. A simplified 1D model cannot capture torsional response and eccentric poundings. To more realistically investigate pounding between adjacent bridge structures, a two-span simply-supported bridge structure located at a canyon site is established with a detailed 3D finite element model in the present study. Spatially varying ground motions in the longitudinal, transverse and vertical directions at the bridge supports are stochastically simulated as inputs in the analysis. The pounding responses of the bridge structure under multi-component spatially varying ground motions are investigated in detail by using the finite element code LS-DYNA. Numerical results show that the detailed 3D finite element model clearly captures the eccentric poundings of bridge decks, which may induce local damage around the corners of bridge decks. It demonstrates the necessity of detailed 3D modelling for a more realistic simulation of pounding responses of adjacent bridge decks to earthquake excitations.

    Related items

    Showing items related by title, author, creator and subject.

    • Numerical simulation of pounding damage to bridge structures under spatially varying ground motions
      Bi, Kaiming; Hao, Hong (2013)
      Previous studies of pounding responses of bridge structures to seismic loadings are usually based on the point to point pounding assumption by using the simplified lumped mass model or beam-column element model. It has ...
    • Experimental and three-dimensional finite element method studies on pounding responses of bridge structures subjected to spatially varying ground motions
      Li-Xiang, H.; Shrestha, Bipin; Hao, Hong; Bi, Kaiming; Ren, Wei-Xin (2016)
      Pounding and unseating damages to bridge superstructures have been commonly observed in many previous major earthquakes. These damages can essentially attribute to the large closing or opening relative displacement between ...
    • Effectiveness of using rubber bumper and restrainer on mitigating pounding and unseating damage of bridge structures subjected to spatially varying ground motions
      Shrestha, B.; Hao, Hong; Bi, Kaiming (2014)
      Pounding and unseating damages to bridge decks have been observed in almost all the previous major earthquakes. Recent studies have highlighted that adjusting the fundamental periods of adjacent structural elements close ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.