3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
Copyright © 2013 Multi-Science Publishing. Reproduced with permission
Collection
Abstract
Previous studies of pounding responses of adjacent bridge structures under seismic excitation were usually based on the simplified lumped mass model or beamcolumn element model. Consequently, only 1D point to point pounding, which is usually in the longitudinal direction of the bridge, could be considered. In reality, pounding could occur along the entire surfaces of the adjacent bridge structures. Moreover, spatially varying transverse ground motions generate torsional responses of bridge decks and these responses may cause eccentric poundings. That is why many pounding damages occurred at corners of the adjacent decks as observed in almost all previous major earthquakes. A simplified 1D model cannot capture torsional response and eccentric poundings. To more realistically investigate pounding between adjacent bridge structures, a two-span simply-supported bridge structure located at a canyon site is established with a detailed 3D finite element model in the present study. Spatially varying ground motions in the longitudinal, transverse and vertical directions at the bridge supports are stochastically simulated as inputs in the analysis. The pounding responses of the bridge structure under multi-component spatially varying ground motions are investigated in detail by using the finite element code LS-DYNA. Numerical results show that the detailed 3D finite element model clearly captures the eccentric poundings of bridge decks, which may induce local damage around the corners of bridge decks. It demonstrates the necessity of detailed 3D modelling for a more realistic simulation of pounding responses of adjacent bridge decks to earthquake excitations.
Related items
Showing items related by title, author, creator and subject.
-
Bi, Kaiming; Hao, Hong (2013)Previous studies of pounding responses of bridge structures to seismic loadings are usually based on the point to point pounding assumption by using the simplified lumped mass model or beam-column element model. It has ...
-
Li-Xiang, H.; Shrestha, Bipin; Hao, Hong; Bi, Kaiming; Ren, Wei-Xin (2016)Pounding and unseating damages to bridge superstructures have been commonly observed in many previous major earthquakes. These damages can essentially attribute to the large closing or opening relative displacement between ...
-
Shrestha, B.; Hao, Hong; Bi, Kaiming (2014)Pounding and unseating damages to bridge decks have been observed in almost all the previous major earthquakes. Recent studies have highlighted that adjusting the fundamental periods of adjacent structural elements close ...